Как выбрать подходящую солнечную панель? Перечень самых эффективных солнечных батарей

09.08.2023 Трубы

Солнечная батарея – автономный источник электроэнергии, который позволяет стать независимым от бытовой электросети. Применение этой современной технологии также обещает значительную экономию средств. Но все ли так просто и как выбрать солнечную батарею для дома, а точнее его автономного электроснабжения. Ниже мы постараемся разобрать основные критерии выбора системы.

Из чего состоит комплект?

Для преобразования солнечного тепла в питание для электроприборов необходимо смонтировать комплекс, который состоит из такого оборудования:

  • панель, сама солнечная батарея, собирающая лучи;
  • контроллер заряда АКБ – от этого компонента зависит эффективность использования аккумуляторов;
  • аккумуляторные батареи – накапливают электрический заряд, от них зависит длительность автономного режима;
  • инвертор – преобразует постоянное напряжение в переменное, которое подается к бытовым приборам.

Чтобы автономная система электроснабжения максимально долго и эффективно работала, необходимо выбрать комплектующие, которые по техническим возможностям соответствовали друг другу и мощности потребляемой энергии.

Чтобы правильно выбрать солнечную панель, необходимо учесть множество факторов. Для начала следует определиться с типом батареи, а они бывают:

  1. Монокристаллические – наиболее эффективны в регионах, где солнечная активность выше.
  2. Поликристаллические – рекомендуется их использовать там, где активность Солнца не слишком высока.
  3. Гибкие – панель изготавливается их аморфного кремния и предназначается для закрепления на покатых, неровных поверхностях, например, крышах домов. Такой тип исполнения отличный вариант для регионов, где солнечные дни большая редкость. Эта разновидность самая дешевая и ее рекомендуется использовать для дачи.
  4. Солнечная батарея из микроморфного кремния – универсальная разновидность, которая одинаково эффективно работает в пасмурную и ясную погоду, не требовательна к углу наклона. Эта последняя разработка, соответственно и стоимость ее выше, чем предыдущих разновидностей.

Панель для эффективной работы должна иметь оптимальный угол наклона, чтобы улавливать солнечную энергию. Считается, что оптимальным показателем тут является угол на 15º больше географической широты. Но это рассчитать не каждый может, поэтому выбор оптимального положения осуществляется вручную, путем наблюдения за зарядкой аккумуляторов.

Выбор солнечной батареи по мощности необходимо осуществлять, исходя из потребностей в альтернативном электрическом питании. Условно это понятие можно разделить на 4 режима:

  1. Аварийное электроснабжение – необходимо обсчитывать совокупную мощность приборов, которые нужны, если отключат электроснабжение. Зачастую это 4–5 кВт/ч. Обычно такой режим делается для отопления и .
  2. Базовое электроснабжение – это практически полное замещение электрической энергии солнечной. Тут, чтобы правильно выбрать характеристики, нужно рассчитать суточное потребление. Необходимо учесть также среднемесячные показатели.
  3. Умеренный режим или комфортный. Когда на альтернативный источник электроэнергии садится только часть приборов. Зачастую это телевизор, чайник, вытяжка. Реже СВЧ-печи, электрические панели, духовые шкафы или холодильники.
  4. Режим полной замены электричества. Тут помимо расчетов, главное, подобрать оборудование, которое будет успевать аккумулировать необходимое количеств энергии.

Собственно выбор солнечной батареи сводится к определению необходимой ее площади при определенных потребностях в снабжении электроэнергией. Другими словами – это способность заряжать аккумуляторы. Солнечная батарея, ее мощность напрямую зависит от площади поверхности, например:

  • Батарея размером 290×350×25 обладает мощностью – 20Вт;
  • 475×513×25 – 30Вт;
  • 470×676×25 – 40Вт;
  • 1650×991×35 – 280Вт.

Существует большое количество размеров солнечных батарей, что значительно упрощает их выбор. Это также определяет большое разнообразие устройств по мощности.

На видео ниже предоставлена технология расчета мощности системы. Рекомендуем просмотреть ролик, т.к. он поможет определиться с выбором:

Рассчитываем мощность системы

Внимание! Следует учесть, что выбрать солнечную панель не достаточно, необходимо подобрать соответствующие потребностям энергоснабжения аккумуляторы. Именно они обеспечивают автономность, поэтому заряда их должно хватать на ночь и на время непогоды, когда эффективность панелей сильно снижается. Из нескольких АКБ собираются специальные блоки.

Как выбрать контроллер

Важно выбрать подходящий контроллер для системы автономного энергоснабжения. Он обеспечивает эффективную работу аккумуляторов, что продлевает их срок эксплуатации. Неправильный выбор влечет быстрый выход из строя АКБ, что приводит к необходимости их замены.

Существует 2 вида контроллеров:

  • МРРТ – позволяет на 100% эффективно использовать энергоемкость зарядных устройств;
  • ШИМ – осваивает аккумулирующуюся энергию только на 80%.

Разница в эффективности освоения заряда создает и разницу в стоимости. Контроллер МРРТ в 2–3 раза дороже, чем ШИМ. Но большая стоимость компенсируется, если посчитать среднегодовые показатели работы системы. Использование ШИМ контроллера вынудит добавить больше батарей.

Очень важно учитывать мощность. Она должна превышать максимальные показатели блока АКБ. ШИМ контроллеры должны соответствовать в этой части показателям зарядных устройств. Это обусловит меньшие энергопотери в процессе преобразования напряжения.

Мнение специалиста по поводу того, как выбрать контроллер, предоставлено на видео:

Выбираем контроллер

Вот и все, что хотелось рассказать вам о том, как выбрать солнечную батарею для дома по мощности и типу исполнения. Надеемся, предоставленная информация помогла вам ответить на вопрос.

Полезное

Аккумулятор – обязательная часть электростанции, занимающейся преобразованием солнечной энергии в электрическую. Основной функцией аккумулятора является накопление энергии и ее последующая отдача. Дело в том, что солнечная батарея может функционировать только при поступлении солнечного света, то есть в светлое время суток.

Другими словами, энергия не будет вырабатываться в пасмурную погоду и в темное время суток. Именно в это время аккумулятор будет отдавать энергию. Срок автономной работы солнечной батареи определяется энергетической емкостью аккумулятора.

Помимо емкости, еще одним существенным параметром данного элемента солнечной электростанции является наибольшее количество циклов полного заряда и полного разряда аккумулятора, а также возможная продолжительность его эксплуатации.

С учетом некоторых особенностей работы солнечной электростанции к ее аккумуляторам предъявляются следующие требования:

  1. Большой зарядный срок, то есть время, за которое аккумулятор заряжается полностью.
  2. Значение саморазряда, чем оно меньше, тем лучше. Саморазряд представляет собой потери энергии, допускаемые самим аккумулятором.
  3. Способность выдерживать большое количество циклов полного заряда и разряда.
  4. Диапазон температур, при которых аккумулятор может функционировать без проблем. Чем выше данный показатель, тем лучше.
  5. Обслуживание аккумулятора. Чем меньше мероприятий необходимо проводить при обслуживании данного элемента солнечной электростанции, тем лучше.

На сегодняшний день выпускаются специальные аккумуляторы, предназначенные именно для солнечных батарей. Подобные аккумуляторы соответствуют всем приведенным выше требованиям. В отличие от прочих аккумуляторов они отличаются низким показателем саморазряда, а также низкой чувствительностью к зарядкам и разрядкам, соответственно эффективность их работы, а также продолжительность службы высокая.


Виды аккумуляторов и их характеристики

Стартерные аккумуляторы


Выбирать эту разновидность стоит только в том случае, если место, где будет установлен аккумулятор, будет иметь хорошую вентиляцию. Подобная разновидность аккумуляторов, предназначенных для работы в составе солнечной электрической станции, отличается довольно высоким показателем саморазряда. Их используют в тех случаях, когда солнечная батарея вынуждена функционировать в тяжелых условиях.

Аккумуляторы с намазными пластинами

Подобные устройства можно назвать наилучшим вариантом в таких случаях, когда осуществлять постоянное обслуживание системы невозможно. Помимо этого гелевые аккумуляторы незаменимы в случае установки в плохо вентилируемом помещении. Однако подобные накопители электрической энергии нельзя назвать бюджетным вариантом. К тому же продолжительность эксплуатации подобных аккумуляторов относительно невелика. Положительными качествами подобных элементов можно назвать малые потери электрической энергии, что значительно продлит работу станции в ночные часы и пасмурную погоду.

AGM-аккумуляторы

Основой работы данных накопителей электрической энергии являются абсорбирующие стекломаты. Между стекломатами располагается электролит в связанном состоянии. Использовать по назначению аккумулятор можно в абсолютно любом положении. Стоимость подобных аккумуляторов относительно невелика, а уровень заряда достаточно высокий.

Срок продолжительности эксплуатации данного аккумулятора составляет около пяти лет. Помимо этого отличительными особенностями аккумулятора AGM-типа, являются: возможность перемещения в полностью заряженном состоянии, способность выдерживать до восьми сотен циклов полного заряда и разряда, относительно небольшие размеры, быстрая зарядка (около семи с половиной часов).

Данный аккумулятор работает в диапазоне температур от пятнадцати до двадцати пяти градусов. Однако подобные аккумуляторы плохо переносят неполный заряд.

Гелевые аккумуляторы


Электролит в данном аккумуляторе имеет консистенцию желе. Конструкция подобных аккумуляторов отличается высокой устойчивостью к заряду и разряду. Они не нуждаются в многочисленных мероприятиях по их обслуживанию. Стоимость подобного элемента относительно невысокая. Потери энергии также не существенны.

Заливные (OPzS) аккумуляторы


Электролит в данных аккумуляторах находится в жидком состоянии. Они не нуждаются в постоянном обслуживании. В большинстве случаев необходимо контролировать уровень электролита примерно раз в год. Подобные устройства, предназначенные для аккумулирования электрической энергии, разработаны для разрядки небольшими токами, а также могут выдерживать большое количество циклов полной зарядки и разрядки.

Однако стоимость подобных устройств довольно высокая, так что их целесообразно использовать в мощных электростанциях, занимающихся преобразованием солнечной энергии в электрическую.

Критерии, влияющие на выбор

При выборе аккумулятора для электрических станций, занимающихся преобразованием солнечной энергии необходимо принимать во внимание следующие критерии:

  1. Значение емкости аккумулятора, которое является одним из наиболее важных параметров устройства. Дело в том, что аккумулятор должен держать энергию около четырех суток. Данный параметр определяется из требуемого энергопотребления.
  2. Продолжительность зарядки и последующей разрядки. Производители устанавливают номинальные значения емкости и скорости зарядки и разрядки аккумулятора, однако далеко не всегда эти значения соответствуют реальным.
  3. Габаритные размеры и вес аккумулятора. При этом стоит отметить, что аккумуляторы одного типа могут иметь разный вес. Значение емкости, как правило, выше у того устройства, которое весит больше.
  4. Условия эксплуатации. Под условиями подразумевается температура, при которой устройство может работать без нарушений, периодичность проведения мероприятий по обслуживанию аккумуляторов и необходимость вентиляции помещения.
  5. Срок эксплуатации и количеством циклов полной зарядки и разрядки. При этом стоит помнить, что чем меньше глубина разрядки при работе аккумулятора, тем больше циклов разрядки и зарядки он способен выдержать.

Выбирая аккумулятор для солнечных батарей и рассчитывая параметры данного устройства, обязательно нужно помнить, что при аккумулировании и в процессе преобразования, устройства теряют часть электрической энергии. Как правило, эффективность современных моделей для солнечных электрических станций составляет восемьдесят пять процентов.

Расчёт и выбор аккумулятора


Для начала необходимо рассчитать мощность ожидаемой выработки энергии. Расчеты производятся на основе мощности излучения солнца, составленных с учетом погоды в разное время года.

Помимо этого при получении результата необходимо в обязательном порядке учесть углы наклона панели солнечной батареи, причем неважно – горизонтально или вертикально она сориентирована.

Угол наклона крайне важен, поэтому его нужно выбирать правильно.

Если планируется эксплуатировать систему в течение всего года, то лучше всего сориентировать панель под угол на пятнадцать градусов больше, чем значение географической широты расположения объекта, где находится система.

Помимо всего этого необходимо учитывать, что в процессе эксплуатации на панели солнечной батареи будет скапливаться пыль, наледь и снег. Для московского региона угол наклона панели составляет семьдесят процентов с ориентацией на южную сторону. Если планируется использовать фотоэлектрическую батарею, то её можно установить на фасаде дома или на крыше, при этом угол наклона должен быть сориентированным в восточном или западном направлении.

После выбора угла наклона панели солнечной батареи нужно провести расчет возможной производительности солнечной электростанции, требуемого числа солнечных модулей, необходимых для функционирования системы в определенном режиме. Все расчеты осуществляются на примере самого худшего месяца, чаще всего этим месяцем является январь, и самого лучшего для солнечной электростанции – июль, а также для большей части года, периода с последнего месяца зимы, февраля, по последний месяц осени, ноябрь.

Именно в этот период солнце наиболее активно. Стандартный показатель инсоляции рассчитывается для площади в один квадратный метр, при этом номинальное значение мощности определяется при температуре в двадцать пять градусов стандартного потока света в один киловатт на один квадратный метр.

Принимая максимальное значение инсоляции (мощность излучения солнца, падающего на поверхность), расчет показывает, что значение вырабатываемой батареей электрической энергии относится к значению показателя инсоляции одного квадратного метра, точно также, как и вырабатываемая энергия к значению мощности солнечного излучения на поверхности земли при ясной погоде, которая приходится на один квадратный метр, то есть тысячи ватт.

Умножая значение месячной инсоляции на значение вырабатываемой мощности солнечной батареи, поделенное на максимальное значение инсоляции, можно более точно узнать возможную месячную выработку энергии солнечной батарей.

Расчет выработки солнечной панели проводится при помощи перемножения значения месячной инсоляции, выработки электрической энергии и соотношения КПД солнечной батареи и номинального значения мощности батареи.

В свою очередь, значение номинальной мощности устройства рассчитывается при помощи перемножения максимального значения мощности инсоляции и выработки электрической энергии, получаемой от солнечной электростанции, поделенных на произведение месячной инсоляции и КПД.

Обзор моделей

Выпуском аккумуляторов для солнечных электрических станций занимаются такие компании, как:

  1. Немецкая фирма Bosh, занимающаяся выпуском техники бытового и промышленного назначения.
  2. Немецкая фирма Sonnenschein, занимающаяся разработкой и выпуском техники.
  3. Английская компания YUASA (Великобритания).
  4. Американская фирма C&D Technoloqies.
  5. Китайский производитель техники Delta.
  6. Китайская компания Haza (Китай).
  7. Тайваньская фирма APS.

Все представленные выше компании, успевшие с самой лучшей стороны зарекомендовать себя на рынке, занимаются выпуском аккумуляторов для солнечных батарей. Продукция каждой из компаний отличается своими особенностями. Например, аккумуляторы, выпускаемые фирмой Haza изготовлены с использованием технологий AGM и HZY.

Для автономных систем лучше всего подходят аккумуляторы, изготовленные с использованием технологии Gel “глубокого разряда” или аккумуляторы технологии OPzV. Таким характеристикам соответствуют аккумуляторы, выпущенные фирмой Delta.

Обзор цен на разные виды

Стоимость аккумуляторов для солнечных батарей во многом зависит от показателя емкости устройства.

Разберем стоимость аккумуляторов для батарей на примере гелевых аккумуляторов, выпускаемых компанией Delta:

GX12-12


Является самой дешевой моделью, который имеет емкость двенадцать ампер часов.

Стоимость 1900 рублей.

HRL12-100

Имеет емкость сто ампер часов.

Стоимость 13200 рублей.

HRL12-890W (HRL12-200)


Является одной из самых дорогих моделей аккумуляторов для солнечных батарей, емкость которого равняется двумстам ампер часам.

Стоимость 29430 рублей.

Последние тенденции использования восполняемых источников энергии не имеют ничего общего с движением зеленых. Основной причиной перехода на ветряки или солнечные батареи стала элементарная экономия. Разовое вложение в альтернативное автономное электроснабжение в удачно расположенном месте (постоянные ветра или преимущественное количество световых дней) полностью окупается уже за 3-4 сезона.

Что такое солнечная батарея

Высокие тарифы на электроэнергию или ее отсутствие на дачном участке привели к тому, что современные дачники или жители частных домов начинают массово оборудовать свои усадьбы бытовыми солнечными панелями для выработки электричества (иногда и обогрева зданий). Такие приборы в зависимости от мощности могут полностью заменить централизованное энергопитание или компенсировать нехватку мощности, временные регулярные перебои в сети. Солнечные батареи для дачи представляет собой комплекс приборов, который грамотный хозяин способен смонтировать самостоятельно.

Важно понимать, что попытка собрать самому весь комплект по частям, может привести к полной нефункциональности: неправильный подбор компонентов к солнечным панелям не даст мощности даже при дорогих и эффективных составляющих. Батареи представляют собой фоточувствительные элементы на жесткой или гибкой основе, инвертора, аккумулятора, контроллеров и вспомогательных компонентов. Фотоэлектрические панели подключаются последовательно, имеют различный КПД в зависимости от типа прибора.

Принцип работы

Солнечные элементы вырабатывают электричество путем химической реакции: в двух кремниевых пластинах, покрытых фосфором и бором, под воздействием ультрафиолета появляется электрический ток. Далее он аккумулируется в накопительных элементах. Прямое использование одной панели без дополнительного оборудования не даст нужной мощности, чтобы даже зажечь обыкновенную лампу накаливания. Эффективность солнечных элементов напрямую зависит от типа фотоэлементов, солярной интенсивности (угол падения лучей), температуры модулей при использовании.

Виды

Солнечные панели имеют разный показатель КПД, который зависит от состава фотоэлементов, принципа выработки электричества, общего комплекта фотоэлектрической локальной станции. Самыми распространенными элементами остаются кремниевые модели, которые имеют максимальную производительность, но одновременно – самую высокую стоимость. Некоторые альтернативные батареи на основе полимеров дешевые, но их рабочий ресурс всего 2 года. Основные типы солнечных панелей в порядке падения эффективности:

  1. Монокристаллические кремниевые преобразователи – светочувствительные элементы черного цвета в форме квадратов со скошенными углами. В идеальных условиях КПД достигает 25%, но если солнце уходит с точки прямого падения лучей на панель (при пасмурной погоде), то мощность вырабатываемого тока падает до минимума.
  2. Поликристаллические кремниевые панели – квадратные элементы темно-синего цвета (состоят из неоднородных кристаллов кремния). КПД не превышает 18%, но принцип функционирования позволяет использовать вторичные материалы. Такие элементы качественно вырабатывают электричество даже в облачную погоду или при рассеянном солнечном свете.
  3. Аморфные панели. В них кремний наносится в вакууме на фольгу, пластик или стекло. Таким способом стоимость фотоэлектрического элемента падает на 15-20%. К минусам стоит отнести низкую производительность (всего 8%), короткое время работы (панели полностью выгорают примерно через 2 года).
  4. Полимерные пленочные солнечные панели. Данные приборы начали набирать популярность и постепенно вытеснять кремний-кристаллические модели с рынка. Панели представляют собой многослойную гибкую пленку из сетки алюминиевых проводников, полимерного слоя активного агента, органической подложки, защитного состава. Даже при низком КПД в 7% такие элементы оправдывают себя низкой стоимостью, низкой весовой нагрузкой, легкостью в установке (саму панель можно резать и подгонять под требуемую форму).

Преимущества и недостатки

Любое технологическое решение имеет свои плюсы и минусы. Учитывая их соотношение, возможный пользователь решает для себя, насколько целесообразно применять ту или иную технологию. Домашние солнечные батареи для дачи для регионов с продолжительным световым днем стали реальной возможностью самостоятельно получать электричество. Плюсы таких панелей:

  • бесплатность и постоянная доступность источника энергии (солнечное освещение присутствует практически в любой точке планеты настолько долго, чтобы в фотоэлектрических элементах был смысл);
  • экологическая чистота батарей;
  • тишина при работе;
  • минимум подвижных элементов;
  • длительный срок службы (относится только к жестким кремниевым панелям);
  • независимость от работоспособности внешнего поставщика электричества;
  • предельной площади одного комплекса батарей неограничена;
  • исключение топливных элементов для выработки электроэнергии.

Купить солнечную батарею для дачи – решение выгодное, но с существенными минусами. Фактически все они связаны с высокой стоимостью качественных комплексов. Возможное время окупаемости предсказать не получится, так как присутствует много переменных (нагрузка на сеть, количество световых дней в году и т.д.). Общие первичные вложения для получения нужной мощности так же могут отпугнуть потенциального покупателя. Потребуются большие площади для размещения панелей, дополнительные устройства, которые не всегда адекватно функционируют.

Комплект солнечных батарей

Отдельно фотоэлектрическая панель не имеет смысла, потому что без дополнительного оборудования выходная мощность будет предельно низкой. Стандартным комплектом в России считается комплекс из кремниевых поликристаллических модулей с КПД 15-20%. Это массивные жесткие панели, требующие надежной фиксации и достаточных площадей для размещения. Набор, который покупатель может найти сам в сети, самостоятельно установить и подключить выглядит примерно следующим образом:

  • фотоэлектрические элементы: выбираются исходя из требуемой мощности на выходе;
  • контроллер заряда – помещается в цепи между аккумулятором и панелью для нормализации напряжения на инверторе;
  • инвертор – преобразователь тока, который переводит постоянное напряжение в переменное 220 вольт;
  • аккумуляторы;
  • разъемы, провода, крепежные элементы.

Как выбирать солнечные батареи для загородного дома

Выбор комплекта полностью обуславливается мощностью, которая будет нужна. Для получения приблизительных данных используют формулу, где данные инсоляции (худший по солнечной погоде месяц в году) умножается на КПД выбираемой панели. Это будут цифры полученной мощности с одного квадратного метра батареи. Потом делится общее количество затрат электроэнергии на полученное число. Это будет общая необходимая площадь электростанции.

После вычисления нужной мощности станции следует рассмотреть репутацию производителя, отзывы владельцев конкретных конфигураций. Важно понимать, что вкладываться в дешевые фотоэлементы В или С, которые потеряют до 40% за несколько лет, не имеет смысла. Стоит единоразово вкладываться в солнечные панели для дачи категории А, которые при правильной эксплуатации прослужат около 30 лет.

Фотоэлементы, которые собраны в одном корпусе можно назвать солнечной батареей. Если несколько батарей подключаются между собой с помощью контроллеров, аккумуляторов, инверторов, тогда получается солнечная электростанция. В этой статье мы вам расскажем, как выбрать солнечную батарею для дома, разберем основные требования и определим оптимальные показатели, которыми должна обладать любая солнечная батарея в частном доме.

Как выбрать солнечную батарею для дома и не сделать ошибку

На самом деле здесь все довольно сложно и запутано, ведь сейчас подобрать качественную батарею для своего дома – это сложная задача. Вы должны четко понимать, что стоят они, будут серьезных денег и в учет придется брать множество мелочей. В этой статье мы вам расскажем обо всех характеристиках, которыми должна обладать любая солнечная батарея, дабы вы не допустили ошибку и не потратили свои деньги впустую.

Фотоэлементы

На мощность, ампераж, выдаваемый вольтаж влияет количество фотоэлементов в солнечных батареях. Сейчас существуют общие принятые стандарты, которые соблюдают все производители. К примеру, в производстве чаще всего используются 6-дюймовые пластины, их можно назвать самыми мощными и функциональными. Размер таких пластин составляет 156х156, как вы понимаете, они квадратные. Интересная статья: .

Как правило, именно такие пластины используются на больших солнечных электрических станциях. В домашних условиях их устанавливать проблематично, поэтому производители выпускают другие формы и размеры, которые можно закрепить на крыше дома или в саду.

Обратите внимание! Некоторые люди покупают стандартные размеры и пытаются самостоятельно их разрезать, получается все это сделать в 70% случаев. Мы не рекомендуем так делать, легче заказать батарею под оптимальный размер, потеря ее мощности будет совсем не значительная.

Мощность

Мощность любой солнечной батареи зависит только от ее размера. Но, это не значит, что вы можете установить на крышу большую и толстую установку. Лучше обращать внимание на стандартные панели в 100 Ватт, они включают в себя 36- 40 поликристаллических модулей, которые находятся в одном корпусе.

Панели такого типа всегда просто устанавливаются, также в их обслуживании нет никаких проблем. Толстые батареи всегда приносят хлопоты и доставляют массу неприятностей, хотя и выдают лучшую мощность.

Моно или поликристаллы

Главной частью любой солнечной батареи являются фотоэлементы, они могут быть:

Монокристаллические обладают большей мощностью и показывают лучшее КПД. Но, останавливать свой выбор на них не стоит, ведь сейчас более 80 солнечных батарей изготавливаются непосредственно из поликристаллических фотоэлементов, ведь они совсем немного уступают. Посмотрите вот такую статистику, она скажет все за себя.

Корпус

Последним важным показателем является корпус солнечной батарее, он должен отвечать следующим качествам:

  1. Прочность.
  2. Легкий вес.
  3. Стойкость к погодным условиям.
  4. Стойкость к перепадам температуры.
  5. Долговечность.
  6. Невысокая цена.

Небольшой совет! Пытайтесь искать алюминиевый каркас, он самый удобный, легкий и долговечный. Если выберете его, то никогда о своем решении пожалеть не сможете.

  1. Оргстекло. Оно пропускает 92% света, маленькая масса и довольно низкая стоимость. Но, есть и большой недостаток, при больших нагрузках (солнечному свечению) оно может выйти из строя и деформироваться.
  2. Поликарбонат. Пропускная способность 90%, не деформируется, имеет низкую стоимость. Однако такое стекло используется редко, ведь при перепадах температуры мутнеет и перестает пропускать свет в нормальном количестве.
  3. Стекло. Сейчас это лучший вариант, пропускная способность 98%, цена самая низкая. Минуса можно назвать два: хрупкость и большой вес.

Вот мы с вами и разобрали, как выбрать солнечную батарею для частного дома. Если у вас остались вопросы или вы желаете дополнить наши размышления, тогда пишите все в комментариях, нам важно Ваше мнение! Ведь все делается только для вас.
Как выбрать солнечную батарею видео:

Интересная статья

Сейчас вы узнаете то, о чем никогда не расскажут продавцы солнечных панелей.

Ровно год назад, в октябре 2015 года, в качестве эксперимента я решил записаться в ряды «зеленых», спасающих нашу планету от преждевременной гибели, и приобрел солнечные панели максимальной мощностью 200 ватт и грид-инвертор рассчитанный максимум на 300 (500) ватт вырабатываемой мощности. На фотографии вы можете увидеть структуру поликристаллической 200-ваттной панели, но через пару дней после покупки стало ясно, что в одиночной конфигурации у неё слишком низкое напряжение, недостаточное для правильной работы моего грид-инвертора.

Поэтому мне пришлось её поменять на две 100-ваттных монокристаллических панели. Теоретически они должны быть немного эффективнее, по факту же они просто дороже. Это панели высокого качества, российского бренда Sunways. За две панели я заплатил 14 800 рублей.

Вторая статья расходов - грид-инвертор китайского производства. Производитель никак себя не обозначил, но устройство сделано качественно, а вскрытие показало, что внутренние компоненты рассчитаны на мощность до 500 ватт (вместо 300, написанных на корпусе). Стоит такой грид всего 5 000 рублей. Грид - это гениальное устройство. С одной стороны к нему подключается + и - от солнечных панелей, а с другой стороны он с помощью обычной электрической вилки подключается совершенно в любую электрическую розетку в вашем доме. В процессе работы грид подстраивается под частоту в сети и начинает "выкачивать" переменный ток (сконвертированный из постоянного) в вашу домашную сеть 220 вольт.

Грид работает только при наличии напряжения в сети и его нельзя рассматривать как резервный источник питания. Это его единственный минус. А колоссальным плюсом грид инвертора является то, что вам в принципе не нужны аккумуляторы. Ведь именно аккумуляторы являются самым слабым звеном в альтернативной энергетике. Если та же солнечная панель гарантированно отработает более 25 лет (то есть через 25 лет она потеряет примерно 20% своей производительности), то срок службы обыкновенного свинцового аккумулятора в аналогичных условиях составит 3-4 года. Гелевые и AGM аккумуляторы прослужат дольше, до 10 лет, но они и стоят в 5 раз дороже обычных аккумуляторов.

Поскольку у меня есть сетевое электричество, то мне никакие аккумуляторы не нужны. Если же делать систему автономной, то нужно добавить к бюджету еще 15-20 тысяч рублей на аккумулятор и контроллер к нему.

Теперь, что касается выработки электроэнергии. Вся энергия вырабатываемая солнечными панелями в реальном времени попадает в сеть. Если в доме есть потребители этой энергии, то она вся будет израсходована, а счетчик на вводе в дом «крутиться» не будет. Если же моментальная выработка электроэнергии превысит потребляемую в данный момент, то вся энергия будет передана обратно в сеть. То есть счетчик будет «крутиться» в обратную сторону. Но тут есть нюансы.

Во-первых, многие современные электронные счетчики считают проходящий через них ток без учета его направления (то есть вы будете платить за отдаваемую обратно в сеть электроэнергию). А во-вторых, российское законодательство не разрешает частным лицам продавать электроэнергию. Такое разрешено в Европе и именно поэтому там каждый второй дом обвешан солнечными панелями, что в совокупности с высокими сетевыми тарифами позволяет действительно экономить.

Что делать в России? Не ставить солнечные панели, которые могут выработать энергии больше, чем текущее дневное энергопотребление в доме. Именно по этой причине у меня всего две панели суммарной мощностью 200 ватт, которые с учетом потерь инвертора могут отдать в сеть примерно 160-170 ватт. А мой дом стабильно круглосуточно потребляет примерно 130-150 ватт в час. То есть вся выработанная солнечными панелями энергия будет гарантированно потреблена внутри дома.

Для контроля вырабатываемой и потребляемой энергии я пользуюсь Smappee. Я уже писал про него в прошлом году. У него два трансформатора тока, которые позволяют вести учет как сетевой, так и вырабатываемой солнечными панелями электроэнергии.

Начнём с теории, и перейдем к практике.

В интернете есть много калькуляторов солнечных электростанций. Из моих исходных данных согласно калькулятору следует, что среднегодовая выработка электроэнергии моих солнечных панелей составит 0,66 квтч/сутки, а суммарная выработка за год - 239,9 квтч.

Это данные для идеальных погодных условий и без учета потерь на конвертацию постоянного тока в переменный (вы же не собираетесь переделывать электроснабжение своего домохозяйства на постоянное напряжение?). В реальности полученную цифру можно смело делить на два.

Сравниваем с реальными данными по выработке за год:

2015 год - 5,84 квтч
Октябрь - 2,96 квтч (с 10 октября)
Ноябрь - 1,5 квтч
Декабрь - 1,38 квтч
2016 год - 111,7 квтч
Январь - 0,75 квтч
Февраль - 5,28 квтч
Март - 8,61 квтч
Апрель - 14 квтч
Май - 19,74 квтч
Июнь - 19,4 квтч
Июль - 17,1 квтч
Август - 17,53 квтч
Сентябрь - 7,52 квтч
Октябрь - 1,81 квтч (до 10 октября)

Всего: 117,5 квтч

Вот график выработки и потребления электроэнергии в загородном доме за последние 6 месяцев (апрель-октябрь 2016 года). Именно за апрель-август солнечными панелями была выработана львиная доля (более 70%) электрической энергии. В остальные месяцы года выработка была невозможна по большей части из-за облачности и снега. Ну и не забываем, что КПД грида по конвертации постоянного тока в переменный примерно 60-65%.

Солнечные панели установлены практически в идеальных условиях. Направление строго на юг, поблизости нет высоких домов отбрасывающих тень, угол установки относительно горизонта - ровно 45 градусов. Этот угол даст максимальную среднегодовую выработку электроэнергии. Конечно можно было купить поворотный механизм с электроприводом и функцией слежения за солнцем, но это бы увеличило бюджет всей установки практически в 2 раза, тем самым отодвинув срок её окупаемости в бесконечность.

По выработке солнечной энергии в солнечные дни у меня нет никаких вопросов. Она полностью соответствует расчетным. И даже снижение выработки зимой, когда солнце не поднимается высоко над горизонтом не было бы настолько критично, если бы не... облачность. Именно облачность является главным врагом фотовольтаики. Вот вам почасовая выработка за два дня: 5 и 6 октября 2016 года. Пятого октября светило солнце, а 6 октября небо затянули свинцовые тучи. Солнце, ау! Ты где спряталось?

Зимой есть еще одна небольшая проблема - снег. Решить её можно только одним способом, установить панели практически вертикально. Либо каждый день вручную очищать их от снега. Но снег это ерунда, главное чтобы светило солнце. Пусть даже низко над горизонтом.

Итак, подсчитаем расходы:

Грид инвертор (300-500 ватт) - 5 000 рублей
Монокристаллическая солнечная панель (Grade A - высшего качества) 2 шт по 100 ватт - 14 800 рублей
Провода для подключения солнечных панелей (сечением 6 мм2) - 700 рублей
Итого: 20 500 рублей.
За прошедший отчетный период было выработано 117,5 квтч, по текущему дневному тарифу (5,53 руб/квтч) это составит 650 рублей.
Если предположить, что стоимость сетевых тарифов не изменится (на самом деле они изменяются в большую сторону 2 раза в год), то свои вложения в альтернативную энергетику я смогу вернуть только через 32 года!

А уж если добавить аккумуляторы, то вся эта система никогда себя не окупит. Поэтому солнечная энергетика при наличии сетевого электричества может быть выгодна только в одном случае - когда у нас электроэнергия будет стоить как в Европе. Вот будет стоить 1 квтч сетевого электричества более 25 рублей, вот тогда солнечные панели будут очень выгодны.
Пока же использовать солнечные панели выгодно только там, где нет сетевого электричества, а его проведение стоит слишком дорого. Предположим, что у вас его загородный дом, расположенный в 3-5 км от ближайшей электрической линии. Причем она высоковольтная (то есть потребуется установка трансформатора), а у вас нет соседей (не с кем разделить расходы). То есть за подключение к сети вам придется заплатить условно 500 000 рублей, а после этого еще и платить по сетевым тарифам. Вот в этом случае вам будет выгоднее купить на эту сумму солнечные панели, контроллер и аккумуляторы - ведь после ввода системы в эксплуатацию вам уже больше платить не нужно будет.
А пока стоит рассматривать фотовольтаику исключительно, как хобби.