Очистка воды от тяжелых металлов: способы и приспособления. Методы очистки воды от примесей и микробов Способы очистки воды от железа

20.10.2023 Дренаж

1 Обзор методов очистки сточных вод от ионов металлов и промышленных красителей

1.1 Методы очистки сточных вод от ионов металлов

Существует большое число специализированных процессов, используемых для удаления металлов из сточных вод. Такие отдельные операции включают:

– химическое осаждение;

– коагуляцию/ флокуляцию;

– ионный обмен и жидкостную экстракцию;

– цементацию;

– комплексообразование;

– электрохимические операции;

– биологические операции;

– адсорбцию;

– выпаривание;

– фильтрацию;

– мембранные процессы.

В промышленности наиболее широко используемый метод очистки растворов от тяжелых металлов – химическое осаждение, примерно в 75% гальванических процессов используется методика осаждения гидроксидами, карбонатами или сульфидами, либо комбинация указанных осадителей для обработки сточных вод. Наиболее широко используемая методика осаждения – гидроксильное или щелочное осаждение, благодаря относительной простоте, низкой стоимости осадителя (известь) и легкости автоматического рН контроля. Минимальная растворимость гидроксидов различных металлов варьируется при рН от 8.0 до 10.0 .

Известен способ реагентов осаждения сточных вод , предусматривающий перевод ионов металлов с труднорастворимые соединения при обработке сточных вод щелочными реагентами с последующим выделением их в осадок отстаиванием.

Способ осаждения ионов тяжелых металлов из промышленных сточных вод включает введение щелочного нейтрализатора при pH от 4 до 12, перемешивание и отстаивание с получением осадка, отличающийся от других спсобов тем, что осадок многократно подвергают контакту со следующими порциями исходного раствора с одновременной нейтрализацией раствора до значений pH, оптимальных для осаждения ионов тяжелых металлов.

Недостатком способа является то, что такие технологии не обеспечивают степень очистки от ионов тяжелых металлов, удовлетворяющую современным требованиям водохозяйственных органов. Кроме того, применение реагентных методов приводит к вторичному загрязнению воды – повышению ее солесодержания, что препятствует повторному использования очищенной воды в производстве. В ряде случаев после реагентной обработки необходима глубокая доочистка сточных вод от соединений тяжелых металлов.

Наиболее близким техническим решением предложен способ очистки шахтных вод путем деления потока обрабатываемой воды на две части, получения разноименно заряженных золей с их последующей взаимной коагуляцией, разноименно заряженные золи получают введением щелочного агента в одну часть потока до pH от 4,0 до 6,5, а в другую от 9,5 до 12,0 .

Недостатком этого способа является получение в результате взаимной коагуляции гидрофильного, влагоемкого и рыхлого осадка, увлекающего за собой значительное количество щелочного агента, что увеличивает расход последнего и шламовые площади, к тому же, технологическая схема предусматривает по крайней мере три точки контроля величины pH: в двух частях потока и на выходе после соединения потоков для их последующей взаимной коагуляции.

Для усовершенствования способа предложено создание оптимальных условий извлечения ионов тяжелых металлов из водоемких стоков с солесодержанием, способствующим образованию коллоидных, мелкодисперсных систем с трудноосаждаемыми взвесями.

Технический результат заключается в экономичности процесса за счет сокращения расхода реагентов и в увеличении степени извлечения ионов тяжелых металлов из сточных вод.

Сущность способа поясняется технологической схемой процесса, изображенной на рисунке 5.

Рисунок 5 – Технологическая схема технического процесса осаждения

Исходный раствор пропускали через тщательно отмытый кварцевый песок для удаления взвешенных веществ.

В соответствии с технологической схемой процесса, изображенной на рисунке 5, при непрерывном перемешивании проводят нейтрализацию исходного раствора 10%-ным раствором щелочи NaOH до оптимальной величины pH осаждения ионов тяжелых металлов, равной для данного раствора значению от 9,5 до 10,5 . За время перемешивания 10 мин, отстаивания до 15 мин возникала граница раздела между раствором и осадком. Объем осадка оценивается в процентах ко всему объему системы. Осветленную водную фазу отделяют от осадка декантацией, к осадку приливали новую порцию исходного раствора до начального объема, проводили нейтрализацию от pH 9,5 до 10,5 при непрерывном перемешивании и последующем отстаивании как было описано выше. Подобную процедуру повторяют четыре или пять раз. При этом всякий раз измеряют объемы осадка и осветленной водной фазы, в последней определяют концентрацию ионов тяжелых металлов

Цементация – процесс замещения металла, при котором в раствор, содержащий ионы металлов вводится более активный металл, например, железо. Таким образом, цементация – это выделение ионизированного металла из раствора в металлической форме за счет спонтанного электрохимического восстановления удаляемого металла с одновременным восстановлением введенного замещающего металла (железа) по реакции:

Cu2+ + Fe0 -> Cu0 + Fe2+.

Железо переходит в ионную форму, медь при этом выделяется на твердую поверхность . Процесс цементации может быть предсказан на основании значений электродных потенциалов. Для него присущ ряд преимуществ:

– простота требований в контроле и управлении,

– малое использование энергии,

– получение ценных высоко чистых металлов, таких как медь.

Скорость цементации не зависит от присутствия кислорода и значения pH. Однако при значениях рН выше 3, гидроксид железа маскирует и мешает выделению меди. Высушенный осадок содержит около 95,5 % чистой меди.

Проведенные исследования показали возможность использования отходов железа для выделения меди в стоках.

Комплексообразование основано на получении комплексного соединения на основе комплексообразующего или хелатного вещества. Комплексообразование связано с химическими характеристиками ионов удаляемых металлов и влияет на механизм извлечения. Например, комплексообразование металла увеличивает растворимость гидроксидов, карбонатов и сульфидов данного металла. На степень комплексообразования влияет рН раствора и концентрация реагента. С точки зрения селективности процесса комплексообразования с ЭДТА была показана возможность разделения меди и цинка в интервале рН от 5 до 6 .

Одним из приемлемых направлений в решении проблемы растворения металлов в органических средах является метод комплексообразования. Для систем без кратных связей наиболее устойчивыми являются пятичленные хелатные циклы. Системы с сопряженными двойными связями образуют шестичленные циклы. Энергетический выигрыш замыкания хелатных циклов (хелатный эффект) определяется как энтропийным, так и энтальпийным факторами.

Поиск систем, позволяющих стабилизировать металл в виде комплексов в органических средах, проводится постоянно, но число таких примеров невелико.

Одним из широко пpименяемых для очистки сточных вод электpохимических методов является электpолиз, дающий возможность выделения металла из pаствоpа на электpоде. Но электpолизный метод извлечения металлов из пpомывных вод встpечает пpеделенные тpудности при небольших концентpациях pаствоpов.

Этот процесс можно осуществить в двух режимах: или пpи постоянной плотности тока, или пpи постоянном потенциале.

Метод электpолиза пpи постоянной силе тока не pекомендуется для очистки pаствоpов, содеpжащих pазные виды ионов, так как пpи этом необходимо, чтобы в течение всего вpемени выделения металла плотность тока не пpевышала пpедельного значения . В пpотивном случае, еще до завеpшения выделения данного металла потенциал электpода может достигнуть величины, пpи которой начнется выделение дpугого металла, и состав осадка может быть неопpеделенным. Поэтому контpоль плотности тока в действительности означает контpоль потенциала электpода с целью поддеpжания его значения на уpовне, соответствующем выделению только одного металла. В этом случае метод электpоосаждения дает более надежные pезультаты.

Контроль этот можно осуществить, фиксируя определённый потенциал катода, на котоpом пpоисходит выделение металла, относительно неизменного потенциала электpода сpавнения.

Раздельное выделение металлов обеспечивается достаточным pазличием в потенциалах pазpяда ионов опpеделяемых металлов, обусловленным либо pазницей в ноpмальных электpодных потенциалах, либо pазницей в пеpенапpяжении, либо тем и дpугим вместе .

Один из трудных вопросов, связанных с разработкой электрохимических методов очистки сточных вод гальванических производств, является подбор анодного материала.

Существует такой способ очистки, при котором сточную воду, содержащую ионы тяжелых металлов и хрома (VI), подвергают гальванохимической обработке в одну ступень с последующей корректировкой рН, нагреванием, вьщерживанием при повышенной температуре и отделением малообъемного тонкодисперсного кристаллического осадка . Данный способ обеспечивает уменьшение объема отделяемого осадка при сохранении высокой эффективности очистки, а также снижение вымываемости ионов тяжелых металлов из осадка.

Во многих отраслях промышленности мембранные процессы широко применяются при вторичном использовании воды, для уменьшения объема сточных вод, и улавливания ценных побочных продуктов (например, металлов). Все мембранные процессы могут быть трех типов: высокого давления, низкого давления и ультрафильтрация. В качестве мембран используются ацетат целлюлозы, полиамиды, полисульфон и т.д. Было отмечено, что мембранные процессы более дорогостоящие по сравнению с соответствующими процессами дистилляции при малых и средних объемах сточных вод. При мембранной экстракции тяжелых металлов отпадает необходимость перемешивания и установки движущихся частей аппаратуры, что значительно снижает стоимость оборудования.

Получены результаты исследований проведенных по применению мембранных нетканных фильтров на основе полиакрилонитрильных волокон, модифицированных кислотными группами NO3и PO4 для очистки стоков свинцово-цинковых комбинатов и производств с использованием процессов гальвано-техники. Показана возможность удаления не только ионов тяжелых металлов до уровня ПДК, но и очистка от продуктов их химических трансформаций с комплексообразователями и хелатами органической и неорганической природы (цианиды, роданиды, аммиакаты, комплексы с ЭДТА и 1,1 – дипиридилом .

За последние несколько лет был представлен ряд новейших технологий. Были изучены основные факторы влияющие на скорость реакции при сульфидном осаждении как вторичной ступени после нейтрализации и отстаивания. Исследовались комплексы металлов с ЭДТА, как известно образующей наиболее стойкие комплексы с металлами. Начальная скорость реакции увеличивалась за счет добавления нехелатированных солей металлов. Был разработан фильтр, содержащий активные сульфиды, для адсорбции растворимых ионов тяжелых металлов.

Была разработана непрерывная система для магнитного отделения ионов тяжелых металлов с использованием ферритов или магнетитов. Преимуществами процесса можно считать, что:

– различные тяжелые металлы могут быть обработаны одновременно;

– образующийся осадок не зависит от рН и температуры;

– остатки феррита могут быть отделены наложением магнитного поля.

Таким образом, для очистки сточных вод от ионов металлов существует многообразие способов очистки, которые можно объединить в несколько групп: реагентные методы, методы электролиза, методы ионного обмена, сорбционные методы. Основные достоинства и недостатки данных методов приведены в приложении А.

1.2 Методы очистки сточных вод от промышленных красителей

В целом, все известные методы очистки сточных вод красильно-отделочных производств можно разделить на три основные группы.

Первая группа – методы, основанные на извлечении загрязнений в осадок или флотошлаки путем сорбции на хлопьях гидроксидов металлов, образующихся при реагентной обработке. Это коагуляция, электрокоагуляция, напорная флотация.

Например, известен способ очистки сточных вод от красителей, который включает введение органического коагулянта и минеральной добавки, причем в качестве органического коагулянта используют продукт конденсации дициандиамина с формальдегидом и гексаметилентетрамином в среде уксусной кислоты, а в качестве минеральной добавки – силикат натрия.

Способ осуществляется следующим образом: сточные воды, содержащие красители, обрабатывают указанным выше коагулянтом. Доза коагулянта зависит от концентрации в воде красителей и подбирается экспериментально, путем пробного коагулирования. Через 3-10 мин после ввода коагулянта добавляют силикат натрия. Процесс очистки сточных вод проходит в течение 10-40 мин. Образующийся осадок – хлопьеобразный, легкий может быть удален путем флотации, отстаиванием, фильтрованием .

Также, известен способ очистки сточных вод красильно-отделочных производств, который включает коагуляцию с последующей флокуляцией и отстаиванием. Отличается тем, что в качестве флокулянта используют гидролизат шерсти, приготовленный из производственных отходов шерсти путем их растворения в 0,1 н растворе щелочи.

Данный способ осуществляют следующим образом. Готовят флокулянт из производственных отходов шерсти путем их растворения в 0,1 н раствора щелочи (при соотношении 1 г шерсти на 100 мл раствора) нагреванием при температуре от 90 до 100°C в течение от 1,5 до 2 ч с последующим выдерживанием в течение от 20до 24 ч и десятикратным разбавлением водой . Флокулянт вводят в очищаемые сточные воды после их обработки алюминийсодержащим коагулянтом так, чтобы конечная концентрация флокулянта в сточных водах составила от 1 до 3 мг/л (по массе шерсти), рН после введения флокулянта доводят от 6,5 до 7.

Недостатками методов первой группы являются невысокая степень очистки, особенно по обесцвечиванию, необходимость эмпирического подбора реагентов, трудность дозировки реагентов, образование значительных количеств осадков или флотошлама, необходимость их обезвреживания, захоронения или складирования.

Вторая группа включает сепаративные методы, такие как сорбция на активных цепях и макропористых ионитах, обратный осмос. ультрафильтрация, пенная сепарация, электрофлотация.

Например, известен способ очистки сточных вод от красителей, который включает их предварительную очистку, разделение обратным осмосом с получением потока очищенной воды и потока концентрата, выпаривание концентрата до сухого остатка. Отличается тем, что разделение обратным осмосом ведут с получением концентрата, а после чего проводят его ультрафильтрацию.

Способ осуществляется следующим образом: очищаемую сточную воду, содержащую красители подают на узел предварительной очистки, где ее очищают от взвешенных веществ, осветляют и нейтрализуют введением раствора NaOH. Предварительно очищенную воду подают в аппарат разделения обратным осмосом, из которого отводят поток очищенной воды, возвращаемой в производство, и концентрат, содержащий краситель. Концентрат отводят и направляют в патрубок струйного насоса. После ультрафильтрации ультрафильтрат направляют на выпаривание, например, в аппарат с падающей пленкой и шнековой выгрузкой сухого остатка. Полученный сухой остаток может быть использован в стекольном производстве или направлен на захоронение .

Методы второй группы обеспечивают высокую степень очистки, но требуют предварительной механической обработки с целью удаления нерастворимых примесей, сложны в аппаратурном оформлении, имеют высокую себестоимость.

Третья группа объединяет деструктивные методы, основанные на глубоких превращениях органических молекул в результате редокспроцессов. Из деструктивных методов наиболее широко применяется очистка стоков окислителями, реагентное восстановление электромеханическая и электрокаталитическая деструкция. К окислительным же методам следует отнести биохимическую очистку.

Среди деструктивных методов наиболее перспективным способом обесцвечивания сточных вод является озонирование. Применение озона позволяет снизить окраску отработанного красильного раствора после крашения каракуля в черный цвет по разведению в 10 раз при начальной цветности по разведению 1:4000. Озонирование раствора желательно проводить с подщелачиванием красильного раствора до рН 12,5. Окончательное обесцвечивание возможно достичь в результате отстаивания озонированного раствора в течение 40 мин с образованием осадка темного цвета (объемом 10% объема красильного раствора). Несмотря на то, что этот метод весьма эффективен, но пока он чаще находится в стадии лабораторных проработок из-за отсутствия хороших озонаторных установок, а также большого расхода озона и высокой энергоемкости при его получении. Кроме того, высокая стоимость получения озона не позволяет рекомендовать данный метод для обесцвечивания сильно концентрированных отработанных красильных растворов от окислительного крашения меха.

Наибольший интерес представляет экологически чистый окислитель – пероксид водорода. Например, известен способ очистки сточных вод от органических красителей, включающий фильтрование подкисленной воды через металлическую загрузку. Отличается тем, что на расстоянии от 0,1 до 0,5 длины слоя загрузки по ходу движения воды вводится пероксид водорода, а в качестве металлической загрузки фильтра используют материалы, изготовленные из элементов d-подгруппы периодической системы элементов, или их сплавы .

В качестве окислителя возможно также использовать активный хлор. Деструктивные превращения под воздействием хлора и его соединений в настоящее время считаются не только эффективными по степени обесцвечивания красителей и снижения ХПК, но и достаточно экономичными процессами. Свободный и содержащийся в различных соединениях хлор способный вступать в реакции хлорирования и окисления органических веществ и других примесей воды, характеризует концентрации так называемого активного хлора. Он обладает высоким окислительным потенциалом и относительной дешевизной. Аппаратурное оформление современных хлораторных установок достаточно компактное и они легко могут быть автоматизированы. Однако, применение активного хлора имеет ряд серьезных недостатков, сдерживающих широкое внедрение данного метода на практике: высокая хлороемкость многих сточных вод; изменение солевого состава воды и увеличение плотного остатка; возможность образования хлорпроизводных и хлоратов, подлежащих дальнейшему удалению. Кроме того, процесс очистки продолжается довольно долго (от1 до 2 ч) и даже при столь длительной экспозиции в обработанной воде остается еще значительное количество активного хлора, что требует принятия специальных мер для дехлорирования.

Также существует способ очистки сточных вод от красителей, преимущественно анилиновых, который включает электролиз при плотности тока от 200 до 300 А/м² в присутствии пероксида водорода с анодами из титана с нанесенным на его поверхность композиционным электрохимическим покрытием платина-графит. Способ осуществляют следующим образом: сточные воды, содержащие анилиновые красители, смешивают с пероксидом водорода и подвергают электролизу. В качестве анода в электрохимической ванне используют титан с нанесенным на его поверхность композиционным электрохимическим покрытием платина-графит, а плотность анодного тока при этом составляет от 200 до 300 А/м², при электролизе происходит глубокая деструкция красителей, при этом достигается практически полное обесцвечивание сточных вод .

Методы третьей группы технологичны, эффективны, не дают осадков, не вносят дополнительные загрязнения.

Таким образом, в результате использования традиционных коагулянтов и окислителей для обесцвечивания отработанных красильных растворов после процессов крашения экономически не выгодно. В связи с этим, проблема очистки сточных вод от промышленных красителей должна решаться путем применения нетрадиционных химических материалов.

1.3 Методы сорбционной очистки сточных вод

1.3.1 Методы сорбционной очистки сточных вод от тяжелых металлов

Очистка сточных вод от тяжелых металлов – жизненно важное направление улучшения экологической обстановки в окружающей среде, так как повышенное содержание солей тяжелых металлов крайне отрицательно действует на организм человека.

Известные ионообменные методы очистки требуют значительных капитальных затрат . Поэтому все большее применение находят сорбционные методы с использованием неуглеродных сорбентов естественного и искусственного происхождения (глинистые породы, цеолиты и др.). Сорбционная обработка целесообразна как последняя стадия после механической и других, более дешевых видов очистки от грубодисперсных, коллоидных и части растворенных примесей. Достоинством метода является высокая эффективность, возможность очистки сточных вод, содержащих несколько веществ. Также важным является возможность регенеративной адсорбционной чистки, то есть извлечение вещества из сорбента, его утилизация и деструкция.

Обезжелезивание воды – одна из наиболее важных проблем при очистке воды. Она возникает при использовании питьевых вод, а также при очистке промышленных сточных вод, содержащих ионы железа, в количествах, превышающих предельно допустимые концентрации (ПДК).

На сегодняшний день не существует единого универсального метода комплексного удаления всех существующих форм железа из воды .

Существует способ сорбционной очистки сточных вод от ионов железа, в котором в качестве сорбента применяют модифицированный сорбент на основе монтмориллонита. Модифицированные образцы сорбентов изготавливались с использованием связующих компонентов и активных ингредиентов с последующим прокаливанием при различных температурах .

Результаты исследований по адсорбционной очистке воды от ионов железа приведены в таблице 1.

В результате установлено, что сорбционная способность сорбента зависит от температуры обжига и размеров гранул. Лучшую сорбционную способность проявляют сорбенты размерами от 1 до 2 мм, прокаленного при 400°С .

Таблица 1 – Результаты исследований по адсорбционной очистке воды от ионов железа (концентрация модельного раствора – 0,7 мг/дм³, скорость фильтрования – 0,6 дм³/ч)

Сорбент ГС (400°С) ГС (400°С) ГС (600°С) ГС (600°С) ГС (800°С) ГС (800°С)

Размер гранул, мм 1–2 5–6 1–2 5–6 1–2 5–6

Масса, г 21,25 17,15 14,21 11,35 13,9 11,45

Объем поглощенного раствора, см³ 10 5 8 4 7 4

Конечная концентрация раствора, мг/дм³ 0,04 0,34 0,15 0,34 0,19 0,41

Степень поглощения, % 94 51 79 51 72 41

Также известен способ сорбционной очистки сточных вод от ионов железа, в котором в качестве сорбента применяют пыль электросталеплавильных цехов. Данная пыль представляет собой тонкодисперсную систему многокомпонентного состава. Присутствие в составе пыли значительного количества оксида кальция, малый размер частиц и высокоразвитая поверхность позволяет использовать ее в качестве сорбента. В данном случае используют способ одноступенчатой статической сорбции: к сорбенту добавляли образцы сточных вод, смесь перемешивали магнитной мешалкой. Через определенные промежутки времени отбирали пробу и анализировали ее на содержание ионов железа, которое находили спектрофотометрическим сульфосалицилатным методом. В результате оптимальная масса сорбента составила 0,5 г .

Существует несколько способов сорбционной очистки сточных вод от ионов хрома. Например, в качестве сорбционных материалов используют модифицированные природные волокнистые материалы, например, древесные опилки, целлюлозу, льнотресту, костру. Этот способ очистки позволяет объединить в одну стадию удаление из растворов высокотоксичных ионов хрома шестивалентного и образующихся в результате восстановления ионов хрома трехвалентного .

Также существует способ очистки сточных вод от ионов тяжелых металлов и хрома шестивалентного, который может найти применение на предприятиях металлургической и химической промышлености, имеющих травильные и гальванические цеха. Для осуществления способа сточные воды, содержащие ионы хрома и другие тяжелые металлы, пропускают через слой цеолита, предварительно обработанный раствором щавелевой кислоты с концентрацией от 0,05 до 0,1 моль/л в присутствии минеральной кислоты до рН от 1 до 2 .

Известен способ, обеспечивающий расширение диапазона извлекаемых веществ, упрощение и удешевление технологии очистки сточных вод за счет использования прочного адсорбента с хорошими сорбционными свойствами фильтрационными качествами. Такой адсорбент для очистки получают смешением природного торфа, песка, глины и диатомита (20-60% по весу), которые сначала смешивают с нефтью (от 10 до 20% по весу), водой и от 3 до 8% водным раствором ПАВ (от 5 до 10% по весу), затем обрабатывают оксидами кальция или магния (от 25 до 50% по весу), сушат и прокаливают при температуре от 300 до 600°С .

Предложен метод очистки сточных вод, образующихся, например, в гальванических или других аналогичных производствах, от ионов тяжелых металлов. Способ основан на сорбции ионов тяжелых металлов на природном нерастворимом сорбенте – пирите, предварительно обогащенном от 84 до 96%, причем размер зерна использующегося сорбента составляет не более 160 мкм . Данный способ обеспечивает удешевление очистки сточных вод, а также получение продукта сорбции, пригодного для длительного хранения и транспортировки.

Сущность следующего метода состоит в фильтровании сточной воды, содержащей тяжелые металлы, через слой сорбента, представляющего из себя измельченную корковую часть коры хвойных пород древесины, подвергнутую экстракции горячей водой, при определенной температуре и скорости протекания. Способ эффективен, так как сорбционная способность использованного сорбента выше по сравнению с другими аналогичными природными лигноуглеводными материалами. Продукт сорбции можно утилизировать путем сжигания .

В последнее время появились идеи, которые предлагают использовать в качестве сорбента производственные отходы, например, тонкодисперсный шлак ОЭМК. Данный сорбент использовали для очистки сточных вод, содержащих ионы никеля, меди и железа.

Принципиальная схема очистки сточных вод приведена на рисунке 6.

Рисунок 6 – Принципиальная схема очистки сточных вод

Результаты рентгенофазового анализа показали наличие в исходном шлаке различного вида силикатов кальция и магния, а также кальцита, оксидов железа, магния и гидроксидов кальция . Также было установлено наличие на поверхности частиц шлака множественных поверхностных дефектов решетки в виде трещин, пиков, шероховатостей, что должно обеспечить хорошие сорбционные свойства шлака. Наличие сорбционных свойств дало возможность предположить высокую эффективность очистки вследствие образования малорастворимых осадков гидроксидов металлов и протекания процессов адсорбции. Результаты очистки сточных вод данным адсорбентом представлены в таблице 2.

Сложно представить свою жизнь без воды. Воду мы используем для питья, приготовления пищи, для личной гигиены, стирки и т.д., то есть, вода необходима для нормальной жизнедеятельности человека. Поэтому так важно, чтобы она была чистой и абсолютно безвредной для здоровья. К сожалению, найти сегодня очень трудно. И причин этому может быть много - от неудовлетворительного состояния водопроводных труб до особенностей источников водоснабжения. Именно поэтому сегодня так актуален вопрос очистки воды в домашних условиях.

Основной недостаток воды из-под крана — чрезмерная жесткость, то есть избыток солей кальция и магния, гидрокарбонатов, сульфатов и железа. Высокая жесткость придает воде горьковатый привкус, оказывает негативное влияние на органы пищеварения, нарушает водно-солевой баланс в организме человека, образует известковый налет на посуде и нагревательных элементах бытовой техники, портит ткани при стирке.

В водопроводной воде могут присутствовать различные примеси: азотные соединения, соли натрия, калия, кальция, марганца и т.д. Спорную пользу приносит хлорирование. С одной стороны, хлорирование — это эффективный, доступный и недорогой способ обеззараживания воды.

С другой стороны, хлор существенно ухудшает вкусовые качества воды, тому же хлор, вступив в реакцию с органическими соединениями, может образовывать хлорсодержащие токсины, мутагенные и канцерогенные вещества и яды, в том числе диоксиды.
Естественно, качество водопроводной воды контролируется соответствующими органами и при превышении концентрации вредных примесей в ней принимаются соответствующие меры. Однако большинство специалистов едины во мнении: пить воду непосредственно из крана нельзя. Нужно ее хотя бы вскипятить.

Отстаивание

Отстаивание – простейший способ очистки водопроводной воды. Под отстаиванием понимают процесс выделения из воды под действием гравитационных сил взвешенных частиц, а именно, солей, некоторых тяжелых металлов и т.д. Для очищения воды данным способом необходимо взять чистый сосуд, например, банку, наполнить ее водопроводной водой, немного прикрыть крышкой и оставить на 5-6 часов. За это время взвешенные частицы осядут на дно. Использовать можно только верхние 2/3 воды, нижнюю 1/3 часть воды желательно вылить, так как именно в ней концентрируются все вредные примеси. Отстаивать воду более указанного времени не рекомендуется, так как в длительно стоящей воде могут начать размножаться патогенные бактерии.

Кипячение

Кипячение считается самым простым и доступным способом очистки бытовой воды. Более того, если воду не очищать посредством фильтров, кипячение является обязательным условием ее безвредного для здоровья потребления. Кипячение помогает очистить воду от многих видов примесей. Под воздействием высокой температуры большая часть бактерий погибает, разрушаются хлорсодержащие соединения, вода становится мягкой и вкусной. Однако кипячение имеет и свои минусы.

  1. Во-первых, в хлорированной воде под воздействием высокой температуры образуется диоксид, имеющий тенденцию к накоплению в организме человека и оказывающий канцерогенное действие.
  2. Во-вторых, обычное кипячение (не длительное) уничтожает далеко не всех микробов, не говоря уже о тяжелых металлах, нитратах, феноле и нефтепродуктах.
  3. В-третьих, при длительном воздействии высоких температур происходит разрушении структуры воды и она, в лучшем случае, становится не полезной, а в худшем случае, вредной для здоровья. Кипяченая вода – тяжелая или, как ее еще называют, «мертвая» вода. В ней содержатся тяжелые изотопы водорода – атомы дейтерия. Отрицательное воздействие такой воды на организм человека подтверждено многочисленными исследованиями.

Чтобы очищение воды при помощи кипячения было максимально эффективным, а негативные эффекты были минимальными важно соблюдать следующие правила:

  • Повторно воду не кипятить, выливая из чайника остатки воды и промывая его после каждого использования
  • Желательно кипятить предварительно отфильтрованную воду или хотя бы отстоянную
    Использовать для питья или приготовления пищи только верхние 2/3 объема, оставшуюся воду выливать
  • По мере необходимости очищать чайник и прочую посуду от накипи
  • Избегать длительного кипячения

Замораживание

Очистить водопроводную воду в домашних условиях можно с помощью ее частичного замораживания. Суть этого метода очищения заключается в следующем: более чистая и пресная замерзает быстрее, затем кристаллизуется вода, содержащая примеси и соли. Для очистки воды данным способом необходимо воду налить в емкость, например, в пластиковую бутылку, и поставить в морозильную камеру. Когда на поверхности воды образуется первый тонкий слой льда, его следует удалить, так как это замерзла быстрозамерзающая тяжелая вода.

После того, как вода замерзнет примерно на половину, емкость достать из морозильной камеры. Именно замерзшую воду следует использовать для питья и приготовления пищи. Незамерзшую воду использовать не стоит. В зимнее время очищать воду гораздо проще. В морозную погоду емкости с водой можно ставить на открытый воздух.

Для лучшего эффекта можно воспользоваться двойным очищением, то есть, вначале воду отстоять либо пропустить через фильтр, а уж затем заморозить.

Кстати, еще с древних времен известно, что талая вода обладает рядом . Таким образом, очищение воды путем замораживания позволяет получить не только чистую, но и целебную воду.

Бутилированная вода

Заменить некачественную воду из крана можно бутилированной, которую легко можно купить в любом магазине. Сейчас многие люди предпочитают именно такую воду, считая ее максимально безопасной для здоровья. Бутилированная вода подразделяется на две категории: вода первой категории и вода высшей категории. Вода первой категории представляет собой хорошо очищенную водопроводную воду. То есть вода из-под крана вначале подвергается очистке от примесей, затем обеззараживанию, после чего в нее добавляют полезные элементы и разливают в емкости. Такая вода, бесспорно, лучше водопроводной, однако не всем производителям удается полностью очистить воду от примесей.

Качество воды высшей категории намного выше. Чаще всего это чистая подземная вода, не содержащая вредных примесей. Такая вода либо изначально богата такими соединениями, как фтор, калий, кальций, йод, либо ее обогащают ими перед разливанием в емкости. Существует ошибочное мнение, что воду достаточно очистить от всех примесей, и она будет полезной. На самом деле вода должна обогащать организм человека минеральными веществами. К сожалению, на рынке много недобросовестных производителей, которые продают не только плохо очищенную бутилированную воду, но и недостаточно минерализованную. Поэтому, чтобы не приобрести подделку, стоит обращать внимание на следующие моменты:

  • На этикетке емкости с водой обязательно должна быть информация о категории воды
  • Емкость не должна иметь вмятины, рисунки и надписи на этикетке должны быть четко отпечатаны
  • На дне емкости с водой не должно быть осадка
  • Лучше покупать воду известных производителей, выпускающих подобную продукцию давно

Бытовые фильтры

Чистую и полезную воду можно получить с помощью бытовых фильтров. Существует много различных фильтров, с помощью которых воду можно очистить с различной степенью очищения. Бытовые фильтры разделяют на две группы:

  1. Кувшинные фильтры. Они отличаются простотой в использовании и доступностью, однако, их производительность и степень очистки воды невысокие. Если в водопроводной воде имеется много механических примесей, но ее химический состав соответствует нормам, можно ограничиться этим прибором. Срок эксплуатации фильтра большой, главное, примерно один раз в 1,5-2 месяца (после очистки 150-300 литров воды) производить замену картриджа. Кувшин необходимо регулярно мыть, а также не допускать длительного хранения в нем отфильтрованной воды. В противном случае, возможно ее Перед длительным перерывом в эксплуатации его следует промыть, высушить и хранить в сухом месте, так как влага – благоприятная среда для размножения патогенных микробов.
  2. Проточные модели. Они подключаются непосредственно к водопроводу или водопроводному крану, стоят относительно дорого, но при этом характеризуются высокой производительностью и обеспечивают высокое качество очищенной воды. Применение подобных моделей целесообразно, если вода отличается высокой жесткостью и имеет вредные примеси. Используемые в них картриджи не только производят механическую чистку воды, но и осаждают токсичные химические примеси, делают воду мягче приятнее на вкус.

Для эффективной работы фильтра необходимо своевременно менять картридж, который имеет ограниченный ресурс. Как правило, в стационарных моделях картридж служит примерно 1 год. Важно помнить, что проточные фильтры нуждаются в непрерывной эксплуатации. При длительном перерыве в использовании такого фильтра в его картридже создаются оптимальные условия для размножения микробов, а также происходит потеря эксплуатационных свойств фильтрующего материала. В результате может возникнуть необходимость в замене картриджа и основательной чистке полости фильтра.

Фильтрация активированным углем и минералами

Считается, что активированный уголь поглощает из воды вредные для организма человека вещества, включая такие тяжелые металлы, как свинец, радон и продукты его распада, хлор, пестициды и др. В то же время он обогащает воду ценными минералами. Для очистки воды таблетки активированного угля упаковывают в марлевый мешочек и помещают в емкость с водой на 12-14 часов. По истечении этого времени чистая вода пригодна для употребления. Не рекомендуется оставлять воду с активированным углем на более длительный срок, так как такая вода может стать благоприятной средой для размножения различных микроорганизмов.

Нередко для очистки воды используют минералы, в частности, кремний.

Данный способ получения чистой воды использовали еще в Древней Руси. Считается, что благодаря активации воды кремнием она становится не только чистой, но и более вкусной и может храниться долгое время без изменения состава. В такой воде жизнь вирусов и болезнетворных микробов просто невозможна. Кремний абсорбирует такие вредные для здоровья человека вещества, как соли тяжелых металлов, пестициды и др. Чтобы в домашних условиях очистить воду кремнием необходимо промытый под проточной водой кремний поместить в стеклянную или эмалированную посуду, залить водой из расчета 10 г минерала на литр воды. Посуду накрыть чистой тканью и поместить в темное место на 2-3 дня.

По истечении указанного срока использовать верхние 2/3 воды, оставшийся слой вылить, так как именно там накапливаются вредные вещества из воды. Полученную кремниевую воду нельзя хранить в холодильнике или кипятить. Лучше оставить ее хранить в помещении при температуре не ниже +10 °С.

О современных методах очистки питьевой воды расскажет видеоматериал:


Расскажите друзьям! Расскажите об этой статье своим друзьям в любимой социальной сети с помощью социальных кнопок. Спасибо!

Телеграм

Вместе с этой статьей читают:

  • Липецкий бювет — минеральная вода, наделенная целебными…

Вода это лучший существующий растворитель, и в природе практически не встречается чистая, полностью не включающая примесей вода.

Даже дождевая вода содержит малые количества примесей, которые она впитывает из воздуха, будь то растворенные газы или микроскопические частицы пыли.

В природной воде содержится большое количество примесей различной природы: газы, соли тяжелых металлов, галогены, органические вещества, сложные химические вещества природного и антропогенного происхождения, микроорганизмы, простейшие.

Вещества, которые имеют высокую токсичность и попадающие в организм человека с пищей, водой, воздухом, через кожу называют общим словом ксенобиотики.

Токсичность - способность вещества нанести вред организму.

Почти любое вещество может быть токсичным, безвредным, а в определенных случаях полезным.

Роль некоторых элементов из периодической таблицы химических элементов Менделеева пока не выяснены, однако с влиянием на человеческий организм большинства веществ ученым более или менее все понятно.

Главное количество вещества попадающего в организм человека в единицу времени, частота употребления, путь поступления.

Многие вещества, которые необходимо удалять в процессе водоподготовки из питьевой и технической воды в микроскопических дозах входят в состав гормонов, ферментов, принимают участие во многих микробиологических процессах происходящих внутри живого организма в процессе его жизнедеятельности.

Более 40 металлов периодической системы с атомным весом свыше 50 атомарных единиц к группе потенциально опасных веществ.

Исключению подлежат свинец, кадмий, висмут и ртуть, чья роль в происходящих биологических процессах в белковых организмах пока не ясна ученым.

Такие металлы называют тяжелыми металлами в воде.

В отрасли водоочистки и водоподготовки к тяжелым металлам в питьевой воде относят и вещества, которые строго говоря, к ним не относятся, например висмут или мышьяк.

Это происходит потому, что у этих веществ высокая токсичность даже при малых концентрациях, способность накапливаться в тканях организма и влиять на происходящие внутри организма химические процессы.

Для питьевой воды существуют утвержденные российским законодательством нормативы. Существует мнение, что часть из них устарело, нормы не соответствуют оптимальным количествам по содержанию веществ. Однако данные нормативы существуют во многих странах мира, при необходимости происходит их коррекция, и точно понятно, что нормы основаны на серьезных научных исследованиях российских, а ранее советских ученых химиков. Поэтому очистка воды от тяжелых металлов крайне необходима и важна.

Все металлы имеют нормативы по предельно допустимым концентрациям. Все специалисты в области очистки воды ориентируются на показатели ПДК СанПиН 2.1.4.1074-01.


Удаляют соли, сложные химические вещества и органические соединения, уменьшая тем самым содержание тяжелых металлов в воде. Нет универсальной технологии, позволяющей гарантированно удалять абсолютно все примеси в одном процессе. Примеси различных групп удаляются поэтапно, от очистки механических загрязнений до удаления солей жесткости и запахов.

Наиболее частый способ удаления солей тяжелых металлов, ионный обмен – процесс, в ходе которого происходит замещение одного иона на другой. Количество солей в таком процессе не уменьшается, но соли нежелательных соединений фиксируются в ионообменном материале, и удаляются из него при регенерации (если для данного ионообменного материала регенерация технологически осуществима).

Также удаляют соли тяжелых металлов в воде и некоторыми другими методами. Но вне зависимости от того, какой именно метод удаления будет основным, проектирование проекта системы водоочистки, подбор оборудования для ее надежной работы осуществляется на основании полного химического анализа исходной воды.

Для очистки водопроводной воды от тяжелых металлов, а в ряде регионов нашей страны отмечены превышения по ряду подобных соединений, используются надежные и проверенные многолетней эксплуатацией в разных регионах системы бытовой очистки воды.

На сайте можно подробно ознакомиться с преимуществами и ограничениями той или иной системы бытовой очистки воды. А звонок в нашу компанию позволит потенциальному покупателю получить исчерпывающую информацию от специалиста по доочистке воды именно в его регионе.

Без воды нет жизни. Человек – на ⅔ вода. За жизнь мы выпиваем около 75 тонн воды. При этом 80% своих болезней мы выпиваем, утверждал Луи Пастер. По данным Всемирной организации здравоохранения водой передается 85% известных болезней, от которых ежегодно умирает 25 миллионов человек. Кроме того, загрязненная вода на 30% ускоряет процесс старения.

По мнению бывшего генерального директора Всемирной организации здравоохранения Гру Харлем Брундтланд многих случаев болезни и смерти можно было бы избежать с помощью недорогих и доступных средств очистки воды.

Пить воду из-под крана, конечно, можно, но вряд ли нужно – об этом сегодня знает каждый школьник. В городской воде обычно содержится очень много механических и химических загрязнений. В воде существует много бактерий и вирусов. К примеру, если человек долгое время продолжает пить воду с превышающей нормой железа он может получить заболевание печени. Вода, которой мы пользуемся, подчистую содержит много солей кальция и магния. Из - за этого вода делается особенно жесткой. Употребление такой воды плохо сказывается как на бытовой технике, так и на организме человека. К сожалению, санитарные нормы требуют от станций водоподготовки обязательного добавления хлора для обеззараживания воды, что тоже негативно сказывается на здоровье.

Одним только кипячением проблему очистки воды не решить – далеко не все содержащиеся в ней «добавки» оседают в виде известкового налета на стенках чайника. Стоит представить себе, что нечто подобное накапливается в нашем организме, чтобы раз и навсегда отказаться от потребления недоочищенной воды. Чтобы такой проблемы не было, нужно позаботиться о полноценной очистке воды .

Какой водой пользоваться?

Некоторые покупают питьевую воду в бутылках. Бутилированная вода разнообразна по составу. И прежде чем делать выбор в пользу той или иной марки, нужно внимательно посмотреть, что вам предлагают и за какие деньги. Минеральную воду, например, лучше употреблять по назначению врача. Но к сожалению на рынке очень много недоброкачественных производителей и фальшивок, есть мнение что до трети продаваемых бутылок в России — это не качественная вода!

При таком положении вещей потребителям приходится учиться распознавать поддельную воду, полагаясь только на себя. Если это столовая вода, то у нее не должно быть никакого запаха, не должно быть сверху пленки, не должно быть осадка. Правда, надо помнить, что есть лечебные воды, в которых допускается небольшой осадок.
Технология производства фальшивых минералок очень проста: воду берут из-под крана, для придания специфического вкуса в нее добавляют йод, соль и соду, а затем газируют в дешевых сатураторах (нечто вроде большого сифона).

Первый признак подделки - низкая цена. Оптом фальсификат предлагают на 15-20% дешевле оригинала, а розничные цены на него примерно на 5% ниже, чем на настоящую минералку. Так что если вы встретили воду по ценам ниже среднерыночных, стоит насторожиться: скорее всего, она попала в бутылку из-под крана.

Следует также обращать внимание на дату выпуска воды: оригинальная продукция на складах не залеживается, и если минералка выпущена более полугода назад, это наверняка подделка. Поскольку стеклянную тару подделать труднее, фальшивую минеральную воду чаще всего разливают в полиэтиленовую тару.

Еще один важный момент: прежде чем покупать минеральную воду, надо научиться читать этикетку. Скажем, если кавказскую воду разливают в Туле, то это не кавказская вода, а тульская. На каждой этикетке должен быть правильно указан состав воды и номер скважины, адрес и телефон для связи с производителем. И, наконец, если этикетка бледная, плохо напечатана или небрежно наклеена, ее качеству полностью соответствует и качество содержимого.

Бытовые способы очистки воды

Для очистки воды в бытовых условиях люди используют разные способы. Однако далеко не все знают, как правильно их необходимо осуществлять и какой может при этом возникнуть побочный эффект.

Все способы очистки воды можно условно разделить на две группы: очистка без использования фильтров и очистка с использованием фильтров.

Очистка воды без использования фильтров

Данный вариант наиболее распространен и доступен, поскольку для очистки воды не требуется приобретение дополнительных устройств, кроме как обычной кухонной посуды.

Кипячение

Все мы с детства знаем, что сырую воду пить нельзя, но только кипяченую. Кипячение используют для уничтожения органики (вирусов, бактерий, микроорганизмов и др.), удаления хлора и других низкотемпературных газов (радон, аммиак и др.). Кипячение действительно помогает в некоторой степени очистить воду, однако данный процесс имеет ряд побочных эффектов. Первый - при кипячении изменяется структура воды, т. е. она становится «мертвой», поскольку происходит испарение кислорода. Чем больше мы кипятим воду, тем больше погибает в ней патогенов, но тем более она становится бесполезной для организма человека. Второе - поскольку при кипячении происходит испарение воды, то концентрация солей в ней увеличивается. Они отлагаются на стенках чайника в виде накипи и извести и попадают в организм человека при последующем потреблении воды из чайника.

Как известно, соли имеют тенденцию накапливаться в организме, что приводит к самым различным заболеваниям, начиная от болезней суставов, образованию камней в почках и окаменению (циррозу) печени, и заканчивая артериосклерозом, инфарктом и мн. др. Кроме того, многие вирусы могут легко перенести кипячение воды, поскольку для их уничтожения требуются намного более высокие температуры. Также заметим, что при кипячении воды удаляется только газообразный хлор. В лабораторных исследованиях был подтвержден тот факт, что после кипячения водопроводной воды образуется дополнительный хлороформ (вызывает раковые заболевания), даже если перед кипячением воды была освобождена от хлороформа продувкой инертным газом.

Вывод. После кипячения мы пьем «мертвую» воду, в которой присутствуют мелкая взвесь и механические частицы, соли тяжелых металлов, хлор и хлорорганика (хлороформ), вирусы.

Отстаивание

Отстаивание используют для удаления из воды хлора и оседания крупных частиц. Как правило, для этого водопроводную воду наливают в большое ведро и оставляют в нем на несколько часов. Без перемешивания воды в ведре, удаление газообразного хлора происходит примерно с ⅓ глубины от поверхности воды. Именно этот слой потом и используется для употребления.

Вывод. Эффективность данного способа очистки воды оставляет желать лучшего. После отстаивания необходимо кипятить воду.

Вымораживание

Данный способ применяют для эффективной очистки воды с помощью ее перекристаллизации. Он намного эффективнее кипячения и даже перегонки (процесс получения дистиллированной воды), поскольку фенол, хлорфенолы и легкая хлорорганика (ряд хлорсодержащих соединений - страшнейший яд) перегоняются вместе с водяным паром.

Вымораживание основывается на химическом законе, согласно которому при замерзании жидкости сначала в наиболее холодном месте кристаллизуется основное вещество, а уж в последнюю очередь, в наименее холодном месте, затвердевает все, что было растворено в основном веществе. Данное явление можно наблюдать на примере свечи. В потухшей свече, подальше от фитиля, получается чистый прозрачный парафин, а в середине, где горел фитиль, собирается сажа и воск получается грязным. Этому закону подчиняются все жидкие вещества.

В домашних условиях очистку воды способом вымораживания можно организовать очень просто. Подберите эмалированную кастрюлю, которая влезает с крышкой в морозильную камеру вашего холодильника. Главное, чтобы объем кастрюли был не менее 1 л, т. к. в меньшем объеме процесс разделения чистого льда и грязной не замерзшей воды вряд ли состоится.

Наполните кастрюлю водой. Накройте кастрюлю крышкой так, чтобы между крышкой и водой оставался зазор в два пальца. Тогда холод будет проникать в кастрюлю снизу и с боков, так, что под крышкой вода за 24 часа не успеет замерзнуть, а если и замерзнет, то в последнюю очередь. Кастрюлю следует держать в морозильнике столько времени, чтобы вода успела замерзнуть примерно наполовину (для 3-литровой кастрюли это как раз сутки).

Когда вы вытащите кастрюлю с наполовину замерзшей водой, вы воочию убедитесь, что по краям лед чист, как алмаз, а не замерзшая вода в середине так грязна, что напоминает по цвету чай. Лед над этой грязной водой не очень чист и протыкается даже пальцем. Этот лед надо вырезать ножом и слить всю грязную воду. Если Вы вытащили кастрюлю поздно, так что вода промерзла полностью, тогда возьмите чайник с крутым кипятком и лейте струю в середину кастрюли – кипяток за полминуты «вымоет» весь грязный лед с середины, оставив кругляк чистейшего льда. Чистый лед оставьте на оттаивание.

Очистка воды с использованием фильтров

Современные фильтры для очистки воды используют в основном методы озонирования, применение активного серебра и активированного угля, йодирование, ультрафиолет, озонирование и обратный осмос.

Озонирование воды

Озонирование воды в качестве технологии водоподготовки пользуется популярностью в западных странах. Принцип действия озона при очистке таков: молекулы этой химически активной формы кислорода проникают через клеточные мембраны органических веществ и быстро их окисляют. Это становится причиной гибели клетки микроорганизма. Водоподготовка с помощью озона способствует улучшению вкусовых качеств воды и уничтожению неприятных запахов.

Применение активного серебра

Очищающие свойства серебра используется человеком с незапамятных времен. Когда-то воду просто выдерживали некоторое время в серебряных сосудах, считалось, что после этого вода полностью обеззараживалась. Современное применение серебра для водоочистки заключается в соединении ионов серебра с оболочкой бактерий. У этого метода, однако, есть противники, которые утверждают, что поскольку серебро - тяжелый металл, то такого рода очистка представляет опасность для человеческого организма. На сегодняшний день серебро применяют также для длительного хранения исходно чистой воды.

Активированный уголь

Активированный уголь это реагент сорбционной (от лат. sorbeo - поглощаю) очистки воды для удаления из воды хлора, запахов и цвета. Благодаря своей высокой сорбционной способности, активированный уголь эффективно поглощает из воды остаточный хлор, растворенные газы, органические соединения. Пористая структура активированного угля и, как следствие, большая площадь поверхности, обеспечивает его высокую эффективность.

Йодирование

Йодирование – часто применяющийся способ очистки воды в плавательных бассейнах. Кроме того, специально разработанными йодными таблетками удобно дезинфицировать воду в походных условиях, например, набрав воды из старого сельского колодца или кристально чистого на первый взгляд родничка.

Обработка воды ультрафиолетовыми лучами или посредством ультрафиолетовой мембраны признана одним из наиболее эффективных способов водоочистки. Технология обеззараживания воды с помощью ультрафиолета заключается в прохождении особых фотохимических реакций, в результате которых клетки микроорганизмов, находящихся в воде, серьезно повреждаются, и бактерии погибают.

Обратный осмос – способ очистки воды, применявшийся ранее только для опреснения морской воды. На данный момент усовершенствованная очистка путем обратного осмоса дает сотни тысяч тонн питьевой воды в сутки по всему миру. На основе обратно осмотических систем выпускаются бытовые фильтры для очистки воды, которые являются одними из наиболее эффективных и надежных водоочистных установок. Каков же принцип работы систем обратного осмоса? Основной очищающий элемент этих систем - полупроницаемая мембрана, которая способна пропускать через себя только молекулы воды, но при этом препятствует проникновению веществ с молекулами большего размера (солей тяжелых металлов, примесей, ржавчины). В результате очистки путем обратного осмоса вода и растворенные в ней вещества разделяются на молекулярном уровне, при этом с одной стороны мембраны накапливается практически идеально чистая вода, а все загрязнения остаются по другую ее сторону. Так, обратный осмос обеспечивает гораздо более высокую степень очистки, чем большинство традиционных методов фильтрации. Мембрана обратного осмоса способна удалять из воды и органические вещества. Большой размер вирусов и бактерий также практически исключает вероятность их проникновения через мембрану.

Современные бытовые фильтры

Перед тем, как установить в своем доме фильтр вы должны понимать, ради чего вы это делаете. То есть, какого результата ждете! На сегодняшний день фильтров существует очень много, которые отличаются по комплектации и методам использования.

Фильтры низкой степени очистки – насадки на кран и кувшины

К данной категории относятся фильтры простой очистки с небольшим ресурсом; как правило, это очистка от механических примесей и от растворенного в воде хлора. Ресурс картриджа такого рода фильтров очень небольшой - в среднем его хватает (для 3–4 человек) на срок 15 −45 дней (чем более дорогой кувшин или насадка, тем более качественная очистка и больше ресурс картриджа), после этого картридж нужно менять. У них высокая себестоимость и низкое качество очистки воды.

Насадки на кран

К данной категории относятся простейшие фильтры, монтирующиеся к водопроводному крану диаметром от 15 до 20 мм. Предназначение: доочистка водопроводной воды (используемой для питья). Основная масса данного рода фильтров очищает воду от механических примесей и от хлора. Хотя часть производителей предлагает фильтры насадки с картриджами, содержащими ионообменную смолу - способную частично умягчать воду (по умягчению воды очень небольшой ресурс - в несколько десятков литров) и частично забирать соли тяжелых металлов.

К данной категории относятся простейшие фильтры наливного типа, используемые для доочистки водопроводной (подготовленной / обеззараженной) воды. Принцип действия: кувшин разделен на 2 части (в верхнюю часть заливается очищаемая вода, в нижней части кувшина скапливается очищенная вода), вода самотеком проходит через фильтрующий материал (картридж) очищаясь при этом от механических примесей, хлорорганических соединений, частично от тяжелых металлов.

Фильтры средней степени очистки - 2-х, 3-х ступенчатые фильтры

Данные фильтры предназначены для очистки водопроводной (подготовленной) воды до состояния питьевой воды. Большой ассортимент и разновидность фильтров данной категории позволяет разделить их на несколько типов, и различают исходя из следующих параметров: количества ступеней очистки (в основном это 2-х и 3-х ступенчатые фильтры очистки воды); различаются по месту расположения, после их установки (нижнее расположение «под мойкой», верхнее расположение «на столе»); одноколбовые (в одной колбе может содержаться как одна так и три ступени очистки) и многоколбовые (как правило, не более 3-х колб); так же поскольку все фильтры данной категории являются проточными фильтрами (т. е. происходит проточная фильтрация воды), то еще одним не маловажным фактором является способ подсоединения к трубопроводу. Все фильтры данной категории являются картриджными (используется как правило стандарт Slim Line (SL) - 10), т. е. предполагают замену сменного элемента после того как ресурс картриджа будет исчерпан.

2-х ступенчатые фильтры: (как правило 1-я ступень: механическая очистка, 2-я ступень очистка активированным углем)
3-х ступенчатые фильтры: (как правило 1-я ступень: механическая очистка, 2-я ступень очистка активированным углем, 3-я ступень ионообменная смола, или прессованный активированный уголь тонкой очистки обогащенный одной или несколькими добавками: серебро, ионообменное вещество, кристаллы гексаметафосфата и т. д.)

2-х, 3-х ступенчатыми фильтрами: отлично убираются - механические примеси, хлор, хлоорганические соединения; частично удаляются - пестициды, железо, марганец, тяжелые металлы, трихлорметан, нефтесодержащие продукты, соли жесткости, не удаляются - бактерии, вирусы, хлориды, нитраты, нитриты, фториды.
Себестоимость и качество очистки воды – средняя.

Фильтры высокой степени очистки - обратный осмос, фильтры с ультра фильтрационной мембраной

Основным фильтрующим элементом, в фильтрах высокой степени очистки, является мембрана, по качеству очистки, лучшим является метод обратного осмоса (основной фильтрующий элемент - обратно осмотическая мембрана), далее следует нанофильтрация и ультрафильтрация (ультра фильтрационная мембрана). Наибольшее распространение получил обратно осмотический метод очистки воды, как самый эффективный, а бытовые обратно осмотические системы (RO systems) в странах Европы, Северной Америки являются самыми распространенными бытовыми фильтрами очистки воды. Стоит заметить, что практически вся бутилированная питьевая вода проходит очистку методом обратного осмоса, а вода очищенная бытовым обратно осмотическим фильтром, не будет отличаться от той что продается под известными торговыми брендами…

Помимо обратно осмотических фильтров, к фильтрам с высокой степенью очистки относятся фильтры с ультра фильтрационной мембраной. Они менее распространены, но так же заслуживают внимания, тем более что их стоимость несколько меньше чем стоимость обратно осмотических фильтров.
Себестоимость таких фильтров низкая, а качество очистки воды очень высокое.

Фильтры с ультра фильтрационной мембраной

Одним из методов мембранной очистки воды - является очистка ультра фильтрационной мембраной. Ультрафильтрация мембрана изготовлена из трубчатого композита, удаляет все частицы размером более 0,01 мкм (микрон), в том числе бактерии, вирусы, а так же растворенные соли тяжелых металлов, железо, ртуть, мышьяк, марганец и т.д. Фильтр с ультра фильтрационной мембраной является проточным, с производительностью ~ 150 - 200 литров/час. Внешне такой фильтр похож на обратно осмотический фильтр, но все же очистка методом обратного осмоса является более тонкой (качественной) нежели очистка ультра фильтрационной мембраной.

5 ступенчатая система очистки воды с ультра фильтрационной мембраной имеет следующие стадии очистки:

1) Первая ступень - картридж предварительной механической очистки (материал: витой или вспененный полипропилен), предназначен для удаления механических частиц и взвесей диаметром до 10 мкм (микрон).

2) Вторая ступень - картридж содержащий гранулированный активированный уголь, удаляет хлор и его соединения, органические вещества, газы, улучшает вкусовые качества.

3) Третья ступень - картридж на основе спрессованного активированного угля (Carbon-Block), предназначен для доочистки воды от хлорорганических соединений и механических примесей размером до 0,5 мкм (микрон).

4) Четвертая ступень - ультра фильтрационная мембрана изготовленная из трубчатого композита с диаметром отверстий 0,1–0,01 мкм. Мембрана удаляет практически все органические загрязнители, растворенные в воде посторонние примеси, соли тяжелых металлов, железо, ртуть, мышьяк, марганец и т.д., а так же бактерии и вирусы.

5) Пятая ступень - картридж in line на основе кокосового активированного угля, удаляет запахи и улучшает вкус воды.

Помимо 5 ступенчатой системы встречаются фильтры с 4 ступенями очистки, в таких фильтрах отсутствует 3-я ступень (картридж на основе спрессованного активированного угля (Carbon-Block)).

Фильтры обратноосмотической очистки воды

Фильтры обратноосмотической очистки воды, производят наиболее качественную (полноценную) очистку воды в домашних условиях. Из воды удаляются такие вредные вещества как магний, ртуть, нитраты, нитриты, стронций, мышьяк, цианицы, асбест, фтор, свинец, сульфаты, железо, хлор, …. и т.д…., все бактерии и вирусы.
Бытовые фильтры обратного осмоса делятся на проточные обратноосмотические фильтры и накопительные. Основная разница между проточными и накопительными фильтрами заключается в производительности мембран.

В накопительных фильтрах производительность мембраны небольшая (в среднем 150–300 литров в сутки (~ 0,1–0,15 литра в минуту)), поэтому в таких фильтрах просто необходим накопительный бак, чтобы иметь возможность накопить некий запас чистой воды (как правило 8–11 литров). Вода постепенно фильтруется и накапливается в баке, после того как бак наполнен - фильтрация воды прекращается. Постоянная наполняемость бака поддерживается фильтром автоматически, т. е. получается что в накопительных фильтрах всегда есть запас чистой воды в 8–11 литров.

В бытовых проточных фильтрах обратного осмоса устанавливаются мембраны высокой производительности (обеспечиваемая производительность на уровне 1–2 литра в минуту). В таких фильтрах накопительный бак не нужен. По стоимости фильтры проточные примерно в 2–2,5 раза дороже накопительных.

Как для накопительных систем обратного осмоса, так и для проточных - важным показателем является давление воды на входе в фильтр (давление в трубопроводе). Давление должно быть не менее чем 2,8 атм. (в домах с централизованным водоснабжением давление ниже указаного встречается довольно редко, как правило это верхний (нижний) этаж или исторический центр города с изношенным трубопроводом), в случае меньшего давления устанавливается дополнительно помпа повышения давления.

Наиболее популярные модели накопительных обратноосмотических фильтров:

а) 5-и ступенчатый обратноосмотический фильтр (система обратного осмоса): 1-я ступень - предварительная очистка от механических примесей ~ 15–30 мкм (микрон); 2-я ступень - очистка активированным углем от хлора и хлорорганических соединений; 3-я ступень - тонкая очистка от механических примесей ~ 1–5 мкм (микрон) или доочистка прессованным активированным углем (данная дополнительная ступень в 5 ступенчатом фильтре позволяет лучше защитить мембрану - которая в свою очередь прослужит дольше); 4-я ступень - очистка мембраной (метод обратного осмоса); 5-я ступень - угольный постфильтр.

б) 5-и ступенчатый обратноосмотический фильтр (система обратного осмоса) с минерализатором: В этом фильтре добавлен минерализатор. 1-я ступень - предварительная очистка от механических примесей; 2-я ступень - очистка активированным углем от хлора и хлорорганических соединений; 3-я ступень - тонкая очистка от механических примесей или доочистка прессованным активированным углем; 4-я ступень - очистка мембраной; 5-я ступень - угольный постфильтр. + отдельно минерализатор, позволяющий сбалансировать солевой состав воды.

в) 5-и ступенчатый обратноосмотический фильтр с помпой повышения давления (система обратного осмоса): в таком фильтре, в отличии от 5 ступенчатого осмоса, добавлена только помпа - которую нужно использовать если давление воды поступающей на очистку, менее чем 2,8 - 3 атм., во всех остальных случаях обратноосмотический фильтр можно использовать без помпы.

г) 4-х ступенчатый обратноосмотический фильтр (система обратного осмоса): 1-я ступень - предварительная очистка от механических примесей ~ 15–30 мкм (микрон); 2-я ступень - очистка активированным углем от хлора и хлорорганических соединений; 3-я ступень - очистка мембраной (метод обратного осмоса); 4-я ступень - угольный постфильтр.

Обратноосмотические фильтры компактны и легко устанавливаются на кухне под мойкой, на мойке устанавливается отдельный кран для питьевой воды (фильтры комплектуются всем необходимым для подключения).

Методы очистки воды и то, насколько эффективно они работают, напрямую зависят от правильного определения типов конкретных загрязнений. Для того чтобы узнать больше о видах посторонних веществ и их концентрации, проводят анализы, бактериологические и химические.

Практически во всех случаях обнаруживается присутствие сразу нескольких видов загрязнений, после чего применяют комплекс из разных методов очистки воды , ряд последовательных фильтров. Какие фильтры лучше использовать и в каких случаях – об этом мы расскажем в данной статье.

  • Обеззараживание воды ультрафиолетовым излучением

Загрязнения и методы очистки воды

Вода – основа всего живого. Без нее нет возможности выжить ни человеку как отдельной единице, ни человечеству в общем. Ведь нам мало просто поддержания жизнедеятельности организма, человечество применяет пресную воду в больших объемах, для того чтобы содержать сельское хозяйство и обеспечивать различные бытовые нужды. Водой покрыто свыше 70 % поверхности нашей планеты. На нее приходится примерно 1/4400 веса всей Земли, однако пресной воды всего лишь 3 % от всего объема. И приблизительно 70 % всей пресной воды сейчас находится в ледниковых запасах, а это серьезно усложняет ее применение. Поэтому использование разнообразных методов очистки воды – необходимая мера, к которой прибегает человечество.

Безусловно, тот объем пресных вод, который доступен сейчас, просто громаден и может казаться фактически неисчерпаемым. Однако уже сейчас в мире существуют серьезные проблемы, связанные с нехваткой питьевой воды, и на то имеются следующие причины:

  • Во-первых, при росте численности населения Земли стремительно развиваются водопотребляющие промышленные и хозяйственные отрасли, а значит, увеличивается расход пресной воды.
  • Во-вторых, запасы, которые имеются сегодня, постепенно уменьшаются из-за всевозможных видов загрязнений, которые связаны с фактором человеческой активности.

Когда мы говорим о физическом формате загрязнений, подразумевается, что в водоемы попадают нерастворимые или долгорастворимые виды примеси – песок, глина и всевозможный мусор. О тепловом загрязнении обычно говорят тогда, когда имеется определенная тепловая энергия, которая негативно влияет на окружающую среду. Дополнительный подогрев водоема может привести к серьезным изменениям протекающих там биологических процессов, а это, в свою очередь, повлечь за собой массовую гибель рыб и прочих водных жителей. Либо, наоборот, может начаться бурный рост простейших, что способно серьезно затруднить весь дальнейший процесс очистки воды. Тем не менее, важно отметить, что тепловой тип загрязнения может иметь и положительное влияние, поэтому значение словосочетания «тепловое загрязнение» очень относительно, а его влияние на окружающую среду изучается и оценивается отдельно для каждой конкретной ситуации.

Масса всевозможных загрязнителей породила не менее разнообразные методы очистки воды. Их разделим на несколько групп, опираясь на принципы работы. Итак, самая обобщенная форма классификации методов очистки воды от примесей:

  • физический метод;
  • химический;
  • физико-химический;
  • биологический.

Все эти группы включают много вариаций функционирования процесса и его аппаратного оформления. Кроме того, важно учесть, что методы очистки воды, как правило, применяются комплексно и требуют определенных комбинаций, чтобы достичь максимально эффективного результата. Комплексную задачу очистки обуславливает характер загрязнений. Как правило, ненужным компонентом является ряд разных веществ, которые требуют и разных манипуляций. Те системы, которые основаны на каком-то определенном методе очистки воды, встречаются тогда, когда загрязнение имеется от одного либо нескольких веществ, отделить которые можно, применив один способ. Например, так часто чистят сточную воду производства, где численность и состав загрязнителей изначально известны и неразнородны.

  • Метод озонирования воды для коммунального водоснабжения: специфика

Какие методы очистки сточных вод применимы в том или ином случае

Имеется специальная система учета, куда вносят данные, перед этим берут неоднократные пробы на анализы той воды, что относится к сточной. Санитарные нормы фиксируют допустимые нормы и концентрации (ПДК СанПин 4630-88 «Допустимые нормативы загрязняющей сточной воды»), эти же правила регулируют ХПК и БПК.

Сегодняшние методы очистки сточных вод дают возможность подводить их состав к разрешенной норме. Чаще всего для этого применяют специальные технологии, которые разработаны для переработки определенных веществ, содержащихся в жидких отходах.

Методы очистки сточных вод зависят от типов этих вод. По существующим в ГОСТе нормативам можно классифицировать сточные воды на:

  • Бытовые . Такие отходы очень опасны, так как в них содержится органика, которая является прекрасной питательной средой для всевозможных патогенных бактерий. По этой причине все хозяйственные сточные воды, которые содержат органические загрязнения, обязательно дезинфицируются.
  • Отходы производств . Это отходы, сбрасываемые заводами либо другими объектами, в которых технологии производственного процесса предполагают использовать воду.
  • Дождевые, или природные. Они образуются из атмосферных осадков. Эта вода тоже относится к стоковой, так как отведение происходит посредством ливневых канализаций.

Чтобы перерабатывать стоковую воду, которая относится к бытовому типу, применяют комплексные сооружения. К их составным элементам относят:

  • Отстойники , где расслаиваются взвешенные частицы. Те, у которых больший удельный вес, выпадают осадком, а те элементы, которые легче жидкости, поднимаются к поверхностным слоям.
  • Песколовки . Работают как фильтры, собирающие различные виды примесей, которые невозможно растворить. Речь идет о песке, битом стекле, шлаках и пр.
  • Решетки . Они улавливают мусор крупного размера, такой как ветошь, полиэтиленовые пакеты, трава и ветки деревьев и т. п.

В бытовой очистке воды часто используют септики, которые по сути являются мини-отстойниками. Чтобы улучшить их результативность, практикуется использование специальных биопрепаратов – антисептиков. Эти препараты имеют в составе всевозможные типы микроорганизмов, которые способствуют разложению органики, выпадшей в осадок.

  • Неучтенные расходы и потери воды: методика определения и борьбы

Для очищения отстойника от ила применяют насос. Достаточно применять этот метод очистки воды раз в несколько лет.

Аэротенк немного отличается от отстойника по принципу работы, что наглядно показывает схема ниже:

Применяемые обозначения:

  • А - аэротенк;
  • B - отстойник для смеси, которая обогащена кислородом для чистки ила и канализации;
  • c - патрубок, подающий бытовые стоки (при подключении канализации);
  • d - поступает смесь ила и стоковых вод;
  • е - сюда отводится очищенная жидкость;
  • f - патрубок, откачивающий излишки ила;
  • g - возврат ила.

Суть работы:

  • стоки поступления «с» примешиваются к активному илу в аэротенке «А»;
  • получившаяся смесь интенсивно аэрируется, после чего происходит процесс биологического окисления, затем органика быстро разлагается;
  • вода с илом, обогащенная кислородом, «d», подаются к резервуару «B»;
  • вода после очистки «е» по мере наполнения откачивается;
  • необходимый объем ила поступает обратно по отводам «g», а его излишки одновременно выводятся по патрубку «f».

Описанный метод очистки сточных вод считается достаточно эффективным, если все правильно рассчитать и соблюсти тонкости технологического процесса.

Аэротенками вода очищается от органики, при этом из нее удаляется фтор, азот и их соединения. Единственным недостатком данного метода очистки воды является критичное содержание в стоках соединений, губительных для микроорганизмов.

Высохший ил после аэротенка, а также осадок после септика являются прекрасным удобрением для бытовой сточной воды.

Для того чтобы переработать производственные сточные отходы, применяют сооружения, по принципу работы аналогичные отстойникам, к примеру, нефтеловушки , которые устанавливаются на НПЗ. Основное различие в этих методах очистки сточной воды в способе удаления загрязнений.

Флотатор - это сооружение, которое дает увеличить скорость процесса выделения легких фракций из стоковых вод. Для этого отстойник-резервуар подвергают процедуре аэрации.

Взвешенные вещества, которые содержатся в стоках, можно выводить с помощью гидроциклона . В принципе его функционирования применение центробежной силы, которая возникает в процессе быстрого движения воды в цилиндрическом корпусе.

Для того чтобы убрать мелкодисперсные взвешенные вещества, применяют фильтрующие установки, где фильтром может послужить крупный песок, тканая либо сетчатая материя.

Важно еще сказать про такой метод очистки воды, как обеззараживание - это обработка сточной воды перед ее сбросом. Такую процедуру производят в резервуарах, которые идентичны отстойникам. Чтобы обработать бытовые стоки, применяют хлор или хлористый известняк.

Теперь мы рассмотрим основные методы очистки воды более подробно.

  • Удаление растворенных газов при обработке подземных вод

Основные физические методы очистки воды

Физические способы очистки воды - это те, в основе которых лежат манипуляции, используемые для физического воздействия либо на воду, либо на загрязнения, которые содержатся в ней. Для очистки большой водной массы такие способы применяются в основном, для того чтобы удалять сравнительно крупные твердые включения. Такой метод физической очистки воды большого объема становится предварительной стадией грубой очистки, которая призвана понизить нагрузку на дальнейшие этапы уже более тонкой очистки. При этом есть масса физических методов очистки воды, которые способны глубоко очистить воду, но производительность их в основном очень невысокая.

Основными физическими методами очистки воды считаются:

  • процедура процеживания;
  • отстаивания;
  • фильтрования (включая центробежное);
  • процесс ультрафиолетовой обработки.

Процеживание - это методика пропускания воды, которую нужно очистить, сквозь решетки и различные типы сита, на которых задерживаются крупные загрязнители. Такую методику можно отнести к грубому виду очистки, что нередко становится предварительной стадией. Этот этап метода физической очистки воды применяется для удаления легко отделяемых загрязнителей, что позволяет понизить нагрузку на очистные сооружения и способствует росту работоспособности и продлению срока службы тех установок, которые функционируют на последующей стадии тонкой очистки. Происходит это за счет того, что установки, в которых попадают крупные механические элементы, нередко выходят из строя, и процеживание исключает эту неприятность.

Отстаивать воду - значит отделять часть механического мусора из водной массы благодаря действию силы гравитации, которая тянет более тяжелые частицы на дно, из-за чего образуется осадок. Данный этап физического метода очистки воды также нередко выступает в стадии подготовки, где отделяют более крупные виды загрязнений, а может выступать в качестве промежуточной стадии. Процедура происходит в специальных отстойниках - эти резервуары снабжены специальными устройствами, где продолжительность нахождения воды можно рассчитать исходя из условий полноценного осаждения ненужных частиц.

Фильтрование. Так называется пропускание водной массы сквозь фильтрующий материал, пористый слой которого задерживает частицы определенного диаметра. Принцип фильтрации схож с процедурой процеживания, только здесь можно провести и грубую, и тонкую очистку. Фильтры позволяют убирать иловые загрязнения, песок, окалину и всевозможные твердые включения диаметром буквально в пару микрон. Кроме этого, с помощью данного метода очистки воды возможно повысить ее органолептические свойства. Фильтрование широко распространено, причем и в масштабных водоочистительных установках, и в бытовых повседневных фильтрах с невысокой производительностью.

Ультрафиолетовая дезинфекция является по сути не методом очистки воды, а способом подготовки, когда уже очищенную воду обрабатывают ультрафиолетовыми лучами (для этого используют диапазон световых волн длиной от 200 до 400 нм). Обеззараживание происходит из-за повреждения молекулярной структуры ДНК и РНК из-за фотохимических реакций. Данный способ хорош тем, что процесс абсолютно не зависит от состава воды и после УФ-обработки остается прежним. При этом необходимо принимать во внимание присутствие в воде примесей твердого типа, которые могут оказывать эффект защитного экрана от лучей.

Химические методы очистки воды

Данные методы очистки воды базируются на химической реакции реагента с загрязнителем, и в итоге нежелательные вещества разлагаются на неопасные элементы или выпадают в виде нерастворимого отделяемого осадка и распадаются на неопасные компоненты.

Можно выделить несколько способов очистки, которые кардинально отличаются по типу химической реакции:

  • нейтрализация;
  • окисление;
  • восстановление.

Нейтрализация - процесс, в результате которого выравнивается кислотно-щелочной баланс. Она происходит благодаря взаимодействию щелочей и кислот, после чего образуются соответствующие соли и вода. Такой химический метод очистки воды проводят, смешивая очищаемую воду с щелочной и кислотной средой. Также нейтрализуют загрязнения в воде, когда добавляют реагенты, которые создают среду с определенной реакцией. Для того чтобы кислые стоки были нейтрализованы, чаще всего подходит применение аммиачной воды (NH 4 OH), гидроксида натрия и калия (NaOH и KOH), кальцинированной соды (Na 2 CO 3), известкового молока (Ca(OH) 2) и т. п. При чрезмерном защелачивании стоков используются разные растворы кислот, а еще кислые газы, которые содержат оксиды: CO 2 , SO 2 , NO 2 и т. д. При этом, как правило, используют отходящие газы, которые пропускают через защелоченную воду, и в то же время осуществляется очищение самих газовых соединений от твердых частиц.

Окисление и восстановление применяются, чтобы очистить воду от всевозможных типов загрязняющих веществ, но практическое соотношение в их использовании значительно смещается в пользу окислительных процессов. Благодаря им обезвреживаются различные токсичные вещества и те, что трудно извлечь другим способом. Окислительной реакции можно добиться, переводя токсичные загрязнители в менее токсичные либо вовсе не токсичные формы. Кроме того, из-за применения сильных окислителей погибают микроорганизмы благодаря окислению структуры их клеток. Чаще всего применяются хлорсодержащие окислители. Это хлор в газовой форме (CL 2) и разнообразные его соединения типа диоксида хлора (CLO 2), гипохлоридов калия, натрия и кальция (KCLO; NaCLO; Ca(CLO) 2). Также целесообразно использование для этого метода очистки воды перекиси водорода (H 2 O 2), перманганата калия (KMnO 4), озона (O 3), кислорода воздуха (O 2), дихромата калия (K 2 Cr 2 O 7) и пр.

Процедура обработки воды хлорсодержащими соединениями называется хлорированием. Данный метод обеззараживания и очистки воды хорошо отработан и используется довольно часто. Хлорирование действует пролонгировано в своих антибактерицидных эффектах, и это особенно важно, когда водоснабжение происходит при изношенных трубопроводах, в которых нередко случается вторичное загрязнение водных масс. Помимо этого, реагенты, которыми хлорируют воду, относительно дешевые. Но у хлорирования имеется и ряд существенных недостатков, и они побуждают к поиску альтернативы. Во-первых, хлор является ядовитым. Во-вторых, случается, что побочные соединения, которые образуются при хлорировании, могут быть также очень токсичными. Необходимо тщательное соблюдение условий дозирования при очистке методом хлорирования.

Сейчас распространяется метод обработки воды озоном, так называемое озонирование, у которого эффективность в разы выше, чем у хлорирования, и после не образуется опасных соединений. Единственное, что препятствует повсеместному распространению методу озонирования - это экономические, а также технические трудности с его получением в большом количестве. Кроме этого, озон взрывоопасен, и требуются строгие правила безопасности в зоне работы очистных сооружений.

  • Качество воды, поступающей потребителям в МКД, и направления решения возникающих проблем

Физико-химические методы очистки воды

Физико-химические методы очистки воды применяют, для того чтобы удалять самые разные вещества. Здесь можно говорить о растворенных газах, тонкодисперсных жидких или твердых частицах, ионах тяжелых металлов и различных веществах в растворенном виде. Такие способы применяют при предварительной очистке, а также на последующих этапах уже при более глубокой.

Подобные методы очень разнообразны, и мы расскажем про те, что наиболее часто используются:

  • метод флотации;
  • сорбции;
  • экстракции;
  • ионообмена;
  • электродиализа;
  • обратного осмоса;
  • термические методы.

Флотация , если говорить про нее в рамках очистки воды, то это отделение гидрофобных частиц благодаря пропусканию через воду большого количества газовых пузырьков, как правило, воздуха. Во время этого метода очистки воды загрязненные частицы прикрепляются к пузырьковой поверхности, после чего с ними поднимаются и преобразуются в пену, которую легко удалить. Когда отделившаяся частичка получается большего размера, чем пузырьки, то это ведет к образованию флотокомплекса. Часто флотация комбинируется с применением химических реагентов, которые, например, сорбируются на частицах загрязнителя, что приводит к снижению его способности к смачиванию и является своего рода коагулянтами, приводящими к увеличению отделяемых частиц. Флотация в основном используется, чтобы очистить воду от нефтепродуктов и масел, а еще таким способом можно удалять твердые формы примесей, которые другими методами не отделяются.

Есть разные виды данного процесса. Итак, существуют следующие типы флотации:

  • пенная;
  • напорная;
  • механическая:
  • пневматическая;
  • электрическая;
  • химическая.

Расскажем про принципы функционирования данных методов очистки воды. Часто применяется способ пневматической флотации, где образуется восходящий поток пузырьков благодаря установке на дне резервуара специальных аэраторов, которые представлены в виде перфорированных труб или пластин. Воздух, который подается под давлением, проходит через перфорационные отверстия, благодаря чему дробится на пузырьки, осуществляющие флотацию. Когда применяют напорную флотацию, то поток воды, которую требуется очистить, смешивают с другим потоком воды, перенасыщенным газом и находящимся под давлением. Затем все вместе подается в резервуар для флотации, и из-за резкого падения давления газ, который растворен в воде, выделяется в маленьких пузырьках и поднимается на поверхность. Когда речь идет об электрической флотации, то пузырьки возникают на поверхности под воздействием электрического тока, электроды располагаются в самой воде.

  • АСКУВ: о пользе системы автоматизированного учета воды

Сорбция основана на поглощении определенных ненужных элементов на поверхности сорбента (адсорбция) либо в его объеме (абсорбция). Применительно для очистки воды используют адсорбцию, которая может быть как физической, так и химической. Отличаются эти виды адсорбции тем, как именно удерживается загрязнитель: при помощи силы взаимодействия молекул (физическая адсорбция) либо же образования химических связей (это так называемая хемосорбция, иначе говоря, химическая адсорбция). Методы очистки воды такого рода могут быть очень эффективными и убирать мельчайшие концентрации загрязнителя при большом расходе, и это дает им право приоритета в качестве способов завершения очистки. Сорбцией удаляются пестициды, гербициды, всевозможные фенолы, ПАВ и пр.

Адсорбентами являются, к примеру, активированный уголь, силикагель, алюмогель и цеолиты. Структура таких веществ становится пористой, и это сильно увеличивает объем и площадь адсорбента, который приходится на единицу его объема, благодаря чему процесс становится высокоэффективным. Такой современный метод очистки воды возможно осуществить, смешивая очищаемую воду и адсорбент либо фильтруя воду через адсорбент. В зависимости от того, какой материал применяется в качестве сорбента, и от того, какой тип загрязнения нужно убрать, очищение будет либо регенеративным (адсорбент после регенерирующих действий применяют снова), либо деструктивным (адсорбент невозможно регенерировать, поэтому он подлежит утилизации).

Способ экстракции сводится к применению экстрагентов. Если рассматривать термин применительно к методу очистки воды, то эктсрагентом называют не смешиваемую либо плохо смешиваемую жидкость с водой, однако хорошо растворяющую находящиеся в воде загрязнители. Происходит это так: очищаемую воду и экстрагент перемешивают, чтобы развить большую поверхность фаз контакта, затем растворенные загрязняющие вещества перераспределяются, и основная их часть переходит в экстрагент. Он насыщен загрязнителями и теперь именуется экстрактом, в то время как очищенную воду называют рафинатом. После очистки экстрагент либо утилизируют, либо регенерируют, что зависит от условий данного процесса. Таким физико-химическим методом очистки воды удаляются в основном соединения органики - фенолы и кислоты. Когда вещество, которое экстрадируется, имеет какую-то ценность, то по завершении процесса его могут не утилизировать, а использовать в других целях. Это способствует тому, чтобы применять экстракционный способ очистки вод на предприятиях, извлекать и в дальнейшем использовать, либо же вернуть в производство ряд тех веществ, что теряется в стоковых водах.

Ионный обмен чаще всего применяется в процессе водоподготовки, для того чтобы смягчить воду, то есть изъять жесткие соли. Суть процесса в том, что происходит обмен ионами воды с особым материалом, который называют ионитом. Их подразделяют на катиониты и аниониты, что соответствует типу тех ионов, которые вступают в обмен. В химической науке ионитом называют вещество с большим количеством молекул, в составе которого - каркас (матрица) с высоким числом функциональных групп, способных к ионному обмену. Встречаются природные иониты, например, сульфоугли и цеолиты, применяемые на первых стадиях развития ионного метода очистки воды. Сейчас широко распространены искусственные смолы ионного обмена, и они сильно превосходят природные иониты. Метод очистки воды с помощью ионного обмена на сегодняшний день широко распространен и в промышленных целях, и в бытовых. Фильтровые устройства для ионной очистки практически не используют для сильно загрязненной воды, и ресурсов фильтра надолго хватает, и после такие фильтры утилизируют. Однако стоит знать, что смолы ионитов все-таки в основном можно регенерировать растворами с высоким содержанием ионов H + или OH -- .

Электродиализ - это комплексный физико-химический метод очистки воды, который сочетает в себе мембранные процессы с электрическими. Им удаляются разные ионы и проводится смягчение воды от солей. Если говорить о различии с обычными мембранными процессами, то здесь применяют особые ионоселективные мембраны, которые пропускают ионы только с определенным знаком. Электродиализ проводится в специальном аппарате, который называется электродиализатор. Он представлен рядом камер, которые разделены чередующимися мембранами обмена катионами и анионами. В эти камеры поступает вода для очистки. В камерах по краям располагаются электроды с подведенным постоянным током. Возникает электрическое поле, и под его воздействием ионы двигаются к электродам в соответствии со своим зарядом, пока не встретят ионоселективную мембрану с таким же зарядом. В результате этого в одних камерах идет процесс постоянного ионного оттока (обессоливающие камеры), и в то же время в других камерах ионы накапливаются (концентрирующие камеры). Разведя потоки разных камер, получаем два раствора: обессиленный и концентрированный. Неоспоримыми преимуществами этого метода очистки воды становится не только очищение от ионов, но также получение концентрата отделяемых веществ, которые можно вернуть в производство. Из-за этого способ электродиализа особенно востребован на химических заводах, где со стоками происходит утеря некоторых ценных веществ, а данный метод дешевле благодаря получению концентрированного вещества.

Систему обратного осмоса относят к мембранным процессам, так как очистку проводят под давлением выше осмотического. Осмотическим называется повышенное гидростатическое давление. Оно прилагается к раствору, который отделяет полупроницаемая перегородка (мембрана) от чистого растворителя, и происходит прекращение диффузии чистого растворителя сквозь эту мембрану в раствор. Если создать рабочее давление выше, чем осмотическое, то начнется переход растворителя обратно из раствора воды, и концентрация растворенного вещества увеличится. Так отделяются газы, которые растворены в воде, соли (в том числе жесткости), вирусы, бактерии, коллоидные частицы. Кроме того, систему обратного осмоса с успехом применяют, для того чтобы получить пресную воду из морской. Очистка воды методом обратного осмоса используется и в быту, и для сточных вод.

Термические методы очистки воды, как понятно из названия, - это воздействие на нее низких или высоких температур. К примеру, очень энергоемким процессом можно назвать выпаривание, но при этом мы можем получить воду высочайшей степени чистоты и раствор высокой концентрации с неиспаряемыми загрязнителями. В то же время в концентрации примесей поможет и вымораживание, так как прежде кристаллизуется только чистая вода, а потом и остальная ее масса, в которой растворены загрязнители. Выпариванием, как и вымораживанием, можно проводить кристаллизацию - отделять примеси в выпадающие осадком кристаллы из концентрированного раствора. Есть еще такой экстремальный термический метод очистки воды, как термическое окисление, когда воду, которую необходимо очистить, распыляют и подвергают влиянию высокотемпературных продуктов топливного сгорания. Этот способ применяют, чтобы нейтрализовать высокотоксичные или плохо разлагаемые загрязнители.

  • Очистка и обеззараживание сточных вод: современная проблематика

Что подразумевает биологический метод очистки воды

Методы очистки воды, которые называют биологическими, основываются на использовании микроорганизмов. При всей очевидности данного способа это наиболее передовой и перспективный метод очистки сточных вод. Для того чтобы осуществлять такой процесс, используют разные виды бактерий, а также распространено использование низших грибов и водорослей, простейших и даже некоторых многоклеточных - красных червей и мотыля. Особенностью этого способа очищения воды является возможность подобрать определенные живые организмы, чтобы оптимально очистить сточные воды определенного состава. К примеру, нитрофицирующими бактериями типа Nitrobacter и Nitrosomonas окисляют азотосодержащие соединения, так как микроорганизмы питаются ими, а фосфат-аккумулирующими организмами чистят воду от фосфора.

Когда микроорганизмы при биологической очистке скапливаются, получается так называемый активный ил. Эта темно-коричневая либо черная жидкая масса имеет землистый запах и в процессе отстаивания оседает хлопьями. Поэтому активный ил достаточно легко отделяется по завершению очистки. Организмы в нем живут не по одному, а колониями, которые называются зооглеи. От того, какой состав у очищаемой воды, и от технологии данного метода очистки воды зависит форма зооглей. Они могут быть шарообразными, древовидными и пр.

Все микроорганизмы, которые используются при биологических методах очистки воды, подразделяют на два типа в зависимости от способа функционирования: анаэробные и аэробные. Аэробные микроорганизмы нуждаются в потреблении кислорода во время питательного процесса, так как он необходим, чтобы окислять вещества. А анаэробным микроорганизмам кислород не нужен. От типа организмов зависит суть технологии проведения процесса и тот набор оборудования, который для этого необходим.

Биологическую очистку проводят в следующих условиях:

  • в биологических прудах;
  • полях фильтрации;
  • в биофильтрах;
  • в аэротенках (окситенках);
  • в метантенках.

При первом и втором методе очистки воды используют простейшие сооружения. Под биологическим прудом понимается водоем, который может быть как естественным, так и искусственным, обычно с естественным типом аэрации, и где в активном иле живут микроорганизмы. Фильтрующее приспособление представлено в виде участка почвы (песка, глины, суглинка или торфа), через него вода фильтруется и очищается за счет микроорганизмов, обитающих в почве. В таких сооружениях нельзя обрабатывать сильно загрязненную воду при активном расходе. Однако такие сооружения биологической очистки практически не нуждаются в эксплуатационных затратах и постоянном контроле.

Биофильтром называется такое сооружение для биологического метода очистки воды, который осуществляют через фильтрацию сквозь прослойку загрузочного материала, покрываемого слоем аэробных организмов. Этот слой еще называют биопленкой. Чтобы обеспечить достаточный кислородный объем, который необходим микроорганизмам для разложения загрязнителей, используется система-распределитель воздуха. Также может быть и естественная аэрация.

Аэротенк представляет собой более сложное очистное сооружение, где аэрация создается искусственно. В нем очищение производят все те же аэробные микроорганизмы. Происходит это следующим образом: воду смешивают с активным илом и затем подают в аэротенк. Система искусственной аэрации стимулирует биологические процессы разложения загрязнений, а также обеспечивает хорошее перемешивание. Для аэрации обычно используют воздух из атмосферы, но в окситенках распространено применение технического кислорода, а это в разы поднимает эффективность процесса очищения.

Когда речь идет о биологических методах очистки сточных вод при помощи анаэробных микроорганизмов, то они в основном происходят в метантенках. Отличается такая очистка тем, что у бактерий отсутствует потребность в кислороде и нет итогового биогаза, продукта жизнедеятельности анаэробных микроорганизмов. Кроме этого, в метантенки подают не воду, а остающийся на дне отстойников концентрированный осадок, который нужно подвергать процессу брожения. Для стимулирования более интенсивного брожения в приборе может быть предусмотрена функция дополнительного нагрева. Можно выделить мезофильный тип сбраживания, который проводится при t 30-35 °C, и термофильный, проводимый при t 50-55 °C. Процедура анаэробного разложения непроста и проходит в несколько этапов, а на завершающем этапе образуется метан, который является экологически чистым видом топлива.

  • Есть ли связь между приборным учетом воды и энергосбережением

Какие еще существуют методы очистки сточных вод

Способ осветления подразумевает метод очистки из воды взвешенных частиц. Его проводят при помощи фильтрации воды сквозь пористые фильтровые картриджи либо сквозь фильтроматериалы. Осаждают взвешенные вещества осветлители, фильтры и отстойники. Внутри осветлителей и отстойников вода движется медленно, благодаря чему взвешенные частицы выпадают в осадок. Для того чтобы осадить мельчайшие коллоидные частицы, которые могут быть во взвеси достаточно длительное время, в воду добавляют коагулянтный раствор. В этих целях распространено применение сернокислого алюминия, железного купороса и хлорного железа. Химическая реакция приводит к образованию хлопьев, которые увлекают при опускании взвеси также коллоидные вещества.

Коагуляцией называют метод очистки воды, при котором водная масса обрабатывается особыми химическими реагентами, чтобы укрупнить загрязняющие частицы. Она способствует использованию методов осветления, обесцвечивания, обезжелезивания. Укрупнение мельчайших частиц происходит благодаря их слипанию под воздействием силы притяжения молекул.

Под обесцвечиванием понимается изменение вида тех частиц, которые придают воде цвет. Используются различные способы исходя из первопричины цветности. Применяют для устранения или обесцвечивания окрашенных коллоидов либо растворенных веществ коагулирование. Также целесообразно использование различных окислителей (производных хлора и самого хлора, перманганата калия, озона) и сорбентов (активного угля, искусственных смол).

Когда речь идет об обеззараживании , то подразумевается способ обработки водной массы при помощи окислителей и/или УФ-излучения для уничтожения микроорганизмов. Воду обеззараживают (удаляют бактерии, споры, микробы и вирусы) на последнем этапе подготовки воды для питья, то есть это - метод очистки питьевой воды. Использовать подземную и поверхностную воду без обеззараживания в большинстве случаев не представляется возможным.

Названия методов обезжелезивание и деманганация говорят сами за себя. Они заключаются в удалении соединений растворенного железа и марганца. Обычно используются для этих целей специальные фильтрующие материалы. Задача избавления воды от железа достаточно сложная и комплексная. Для ее решения наиболее часто используются следующие методы:

Аэрирование - это современный метод очистки воды, при которым кислород окисляет воду с примесями железа, после чего происходит осаждение и фильтрация. Воздух при этом расходуется из расчета примерно 30 л/м 3 . Этот традиционный способ применяется уже много десятилетий. Однако на окисление железа требуются немалые сроки и объемные резервуары, поэтому данный метод применяется только крупными муниципальными системами.

Каталитический процесс окисления с дальнейшим фильтрованием. Это самый популярный сегодня способ обезжелезивания, который применяется в компактных системах с высокой производительностью. Суть данного метода очистки воды в том, что окисление железа идет на поверхностях гранул особой фильтрующей среды, которая обладает функцией катализатора, то есть ускоряет химическую реакцию окисления. Наиболее распространенными считаются фильтрующие среды на диоксиде марганца (MnO 2). Железные соединения при диоксиде марганца тут же окисляются и оседают на поверхности гранул. Затем основная часть окисленного железа начинает вымываться в дренаж во время обратной промывки. Итак, слой гранулированного катализатора являет собой и фильтрующую среду. Чтобы улучшить окислительные процессы, к воде дополнительно добавляют химические окислители.

Смягчение воды - это замещение кальциевых и магниевых катионов на аналогичное число натриевых или водородных катионов. Данный метод очистки воды проводится путем фильтрования сквозь особые смолы ионного обмена. Жесткая вода знакома каждому, достаточно вспомнить накипь в чайнике. Она не подойдет для окрашивания ткани водорастворимой краской, для пивоварения и производства водки. В жесткой воде плохо вспенивается мыло. Излишняя жесткость делает воду непригодной к питанию газо- и электропаровых бойлеров и котлов. Толщина накипи в 1,5 мм понижает теплоотдачу на 15 %, а в 10 мм - на все 50 %. А это приводит к росту расходов электрической энергии или топлива, от чего, в свою очередь, образуются прогары, трещины в трубах и на котловых стенках, и прежде срока выводятся из строя отопительные системы и узлы горячего водоснабжения. Высокоэффективным методом умягчения воды становится использование автоматической фильтрации - специальных смягчителей. Они функционируют по принципу ионного обмена, где жесткие соли в воде заменяются на мягкие частицы, не образующие отложений.

  • Минстрой объяснил снижение температуры горячей воды в квартирах

Какие современные методы очистки воды выбрать в зависимости от типа загрязнения

В этой таблице описаны современные методы очистки природной воды:

Вид загрязнения

Метод очистки воды

Крупнодисперсные, взвешенные, коллоидные частицы

  1. Начальное отстаивание с применением реагентов или без них (зависит от состава водной массы и степени загрязнения).
  2. Коагуляция, то есть укрупнение с помощью химических реакций (добавления соли алюминия, железа, извести) размеров загрязняющих частиц, чтобы они легче потом выпадали в осадок и фильтровались.
  3. Фильтрация с использованием материалов: кварцевого песка, гидроантрацита, активированного угля, доломита и т. д.

Повышение кислотности (рН)

Вода в таком случае фильтруется сквозь гранулированный карбонат кальция или полуобожженный доломит, который содержит магний

  1. Применение аэрации, то есть воздушного нагнетания для ускорения окислительных процессов в трубопроводе и водонапорной колонке.
  2. Воду можно обработать сильным окислителем (озоном, хлором, гипохлоритом натрия, перманганатом калия).
  3. Фильтрация через модифицированную загрузку, при которой происходит удаление окисленного железа (осадка) и растворенного двухвалентного железа

Повышенное содержание кальциевых и магниевых солей (чрезмерная жесткость)

  1. Термическое воздействие, так как кипячение понижает лишь временную (карбонатную) жесткость.
  2. Метод обмена ионами (катионизация) - гранулированная смола поглощает кальциевые и магниевые ионы, взамен отдавая натрий или водород.
  3. Метод электродиализа - изменение концентрации электролитов в растворе под воздействием электротока.
  4. Метод обратного осмоса, то есть пропуск водной массы сквозь полупроницаемую мембрану

Марганцевые ионы

Применяются сильные окислители, ведь марганец часто образует соединения органики (иначе способы удаления марганца схожи с обезжелезиванием)

Наличие бактерий, вирусов и микроорганизмов

  1. Хлорирование. Добавляется хлор, диоксид хлора, гипохлорит натрия либо кальция.
  2. Озонирование, так как озон является мощным природным окислителем, максимально обеззараживающим вирусы и споровые формы (даже устойчивые к хлору). Озон, в отличие от хлора, не ядовит, не является канцерогеном.
  3. Облучение УФ-светом не приносит в воду никакие дополнительные примеси

Небольшие отклонения в органолептических свойствах

Сорбирование при помощи активированного угля позволяет очень эффективно избавляться от неприродных органических веществ, таких как фенол, спирт, эфир, кетон, нефтепродукты, амины, «жесткие» ПАВ, красители органики, соли металлов, микроорганизмы и хлор

Микроорганизмы, соли, соединения органики

Способ обратного осмоса, при котором вода и содержащиеся в ней вещества разделяются полупроницаемой мембраной с мельчайшими отверстиями, обеспечивающими глубокую очистку (до 98 %)