Биосфера как любая экосистема является открытой системой. Биосфера как глобальная экосистема. Понятие о биосфере

Биосфера является глобальной экосистемой. Как уже было отмечено ранее, биосфера расчленена на геобиосферу, гидробиосферу и аэробиосферу. Геобиосфера имеет подразделения в соответствии сосновными средообразующими факторами: террабиосфера и литобиосфера-в пределах геобиосферы, маринобиосфера (океа-нобиосфера) и аквабиосфера - в составе гидробиосферы. Данные образования называют подсферами. Ведущим средообразующим фактором в их образовании является физическая фаза среды жизни: воздушно-водная в аэробиосфере, водная (пресноводная и солено-водная) в гидробиосфере, твердо-воздушная в террабиосфере и твер-доводная в литобиосфере.

В свою очередь, все они распадаются на слои: аэробиосфера - на тропобиосферу и альтобиосферу; гидробиосфера - на фотосферу, дисфотосферу и афотосферу.

Структурообразующие факторы здесь, помимо физической среды, энергетика (свет и тепло), особые условия формирования и эволюции жизни - эволюционные направления проникновения биоты на сушу, в ее глубины, в пространства над землей, бездны океана, несомненно, различны. Вместе с апобиос-ферой, парабиосферой и другими под- и надбиосферными слоями они составляют так называемый «слоеный пирог жизни» и геосферы (экосферы) ее существования в пределах границ мегабиосферы (рис. 12.40).

Рис. 12.40. Протяженность биосферы по вертикали и соотношение

поверхностей, занятых основными структурными единицами

(по Ф. Рамаду, 1981)

Перечисленные образования в системном отношении - это крупные функциональные части фактически общеземной или субпланетарной размерности. Общая иерархия подсистем биосферы представлена на рис. 12.41.

Рис. 12.41. Иерархия экосистем биосферы (по Н. Ф. Реймерсу, 1994)

Ученые считают; что в биосфере имеется восемь - девять уровней относительно самостоятельных круговоротов веществ в пределах взаимосвязей семи основных вещественно-энергетических экологических компонентов и восьмого - информационного (рис. 12.42).

Рис. 12.42. Экологические компоненты (по Н. Ф. Реймерсу, 1994)

Глобальные, региональные и местные круговороты веществ незамкнуты и в рамках иерархии экосистем частично «пересекаются». Это вещественно-энергетическое, а отчасти и информационное «сцепление» обеспечивает целостность экологических надсистем вплоть до биосферы в целом.

Общие закономерности организации биосферы. Биосферу формируют в большей степени не внешние факторы, а внутренние закономерности. Важнейшим свойством биосферы является взаимодействие живого и неживого, нашедшего отражение в законе биогенной миграции атомов В. И. Вернадского, и рассмотрено нами в разделе 12.6.

Закон биогенной миграции атомов дает возможность человечеству сознательно управлять биогеохимическими процессами как в целом на Земле, так и в ее регионах.

Количество живого вещества в биосфере, как известно, не подвержено заметным изменениям. Эта закономерность была сформулирована в виде закона константности количества живого вещества В. И. Вернадского: количество живого вещества биосферы для данного геологического периода есть константа. Практически данный закон является количественным следствием закона внутреннего динамического равновесия для глобальной экосистемы - биосферы. Поскольку живое вещество в соответствии с законом биогенной миграции атомов есть энергетический посредник между Солнцем и Землей, то или его количество должно быть постоянным, или должны меняться его энергетические характеристики. Закон физико-химического единства живого вещества (все живое вещество Земли физико-химически едино) исключает значительные перемены в последнем свойстве. Отсюда для живого вещества планеты неизбежна количественная стабильность. Она характерна в полной мере и для числа видов.

Живое вещество как аккумулятор солнечной энергии должно одновременно реагировать как на внешние (космические) воздействия, так и на внутренние изменения. Снижение или увеличение количества живого вещества в одном месте биосферы должно приводить к процессу с точностью наоборот в другом месте, потому что освободившиеся биогены могут быть ассимилированы остальной частью живого вещества или будет наблюдаться их недостаток. Здесь следует учитывать скорость процесса, в случае антропогенного изменения намного более низкую, чем прямое нарушение природы человеком.

Помимо константности и постоянства количества живого вещества, нашедшего отражение в законе физико-химического единства живого вещества, в живой природе наблюдается постоянное сохранение информационной и соматической структуры, несмотря на то» что она и несколько меняется с ходом эволюции. Данное свойство было отмечено Ю. Голдсмитом (1981) и получило название закона сохранения структуры биосферы - информационной и соматической, или первого закона экодинамики. .

Для сохранения структуры биосферы живое стремится к достижению состояния зрелости или экологического равновесия. Закон стремления к климаксу - второй закон экодинамики Ю. Голдсмита, относится к биосфере и другим уровням экологических систем, хотя и имеется специфика - биосфера более закрытая система, чем ей подразделения. Единство живого вещества биосферы и гомологич-ность строения ее подсистем приводят к тому, что сложно переплетены эволюционно возникшие на ней живые элементы различного геологического возраста и первоначального географического происхождения. Переплетение различных по пространственно-временному генезисуалементов во всех экологических уровнях биосферы отражает правило или принцип гетерогенеза живого вещества. Данное сложение не является хаотичным, а подчинено принципам экологической дополнительности (комплементарности), экологического соответствия (конгруэнтности) и другим закономерностям. В рамках экодинамики Ю. Голдсмита это третий ее закон - принцип экологического порядка, или экологического мутуализма, указывающий на глобальное свойство, обусловленное влиянием целого на его части, обратного воздействия дифференцированных частей на развитие целого и т. п., которое в сумме ведет к сохранению стабильности биосферы в целом.

Взаимопомощь в рамках экологического порядка, или системный мутуализм, утверждается законом упорядоченности заполнения пространства и пространственно-временной определенности: заполнение пространства внутри природной системы из-за взаимодействия между ее подсистемами упорядочено так, что позволяет реализоваться гомеостатическим свойствам системы с минимальными противоречиями между частями внутри ее. Из данного закона следует невозможность длительного существования «ненужных» природе случайностей, включая и чуждые ей.создан-ные человеком. В число правил мутуалистического системного порядка в биосфере входит и принцип системной дополнительности, который гласит, что подсистемы одной природной системы в своем развитии обеспечивают предпосылку для успешного развития и саморегуляции других подсистем, входящих в ту же систему.

К четвертому закону экодинамики Ю. Голдсмита относят закон самоконтроля и саморегуляции живого: живые системы и системы под управляющим воздействием живого способны к самоконтролю и саморегулированию в процессе их адаптации к изменениям в окружающей среде. В биосфере самоконтроль и саморегуляция происходят в ходе каскадных и цепных процессов общего взаимодействия - в ходе борьбы за существование естественного отбора (в самом широком смысле этого понятия), адаптации систем и подсистем, широкой коэво-люции и т.д. При этом все эти процессы ведут к положительным «с точки зрения природы» результатам - сохранению и развитию экосистем биосферы и ее как целого.

Связующим звеном между обобщениями структурного и эволюционного характера служит правило автоматического поддержания глобальной среды обитания: живое вещество в ходе саморегуляции и взаимодействия с абиотическими факторами автодинамически поддерживает среду жизни, пригодную для ее развития. Данный процесс ограничен изменениями, космического и общеземного экосферного масштаба и происходит во всех экосистемах и биосистемах планеты, как каскад саморегуляции, достигающей глобального размаха. Правило автоматического поддержания глобальной среды обитания следует из биогеохимических принципов В. И. Вернадского, правил сохранения видовой среды обитания, относительной внутренней непротиворечивости и служит константой наличия в биосфере консервативных механизмов и одновременно подтверждением правила системно-динамической комплементарности.

О космическом воздействии на биосферу свидетельствует закон преломления космических воздействий: космические факторы, оказывая воздействие на биосферу и особенно ее подразделения, подвергаются изменению со стороны экосферы планеты и потому по силе и времени проявления могут быть ослаблены и сдвинуты или даже полностью утерять свой эффект. Обобщение здесь имеет значение в связи с тем, что зачастую идет поток синхронного воздействия солнечной активности и других космических факторов на экосистемы Земли и населяющие ее организмы (рис. 12.43).

Следует отметить, что многие процессы на Земле и в ее биосфере хотя и подвержены влиянию космоса и предполагаются циклы солнечной активности с интервалом в 1850, 600,400, 178, 169,88,83,33,22,16, 11,5(11,1), 6,5 и 4,3 года, сама биосфера и её подразделения не обязательно во всех случаях должны реагировать с той же цикличностью. Космические воздействия системы биосферы могут блокировать нацело или частично.

Рис. 12.43. Пути космического влияния на биосферу

Деятельность человека и

Эволюция биосферы

Э. И. Колчинский (1988) в эволюции биосферы выделяет следующие тенденции: постепенное увеличение общей ее биомассы и продуктивности; прогрессивное накопление аккумулированной солнечной энергии в поверхностных оболочках Земли; увеличение информационной емкости биосферы, проявляющейся в нарастающем росте органических форм, увеличении числа геохимических барьеров и возрастании дифференцированности физико-географической структуры биосферы; усиление некоторых биогеохимических функций живого вещества и появление новых функций; усиление преобразующего воздействия жизни на атмосферу, гидросферу, литосферу и увеличение роли живого вещества, продуктов его жизнедеятельности в геологических, геохимических и физико-географических процессах; расширение сферы действия биологического (биотического) круговорота и усложнение его структуры. Несомненно, к этому перечню необходимо отнести трансформирующее воздействие на биосферу человеческой деятельности, не исключая нисходящую ветвь эволюции биосферы - все эволюционирующие системы не являются бессмертными, а имеют «начало» и «конец» своего существования. Так, если в эволюции живого вещества имеется непрерывный поток генетической информации, а в геноме человека есть гены от всего ряда его предков, то в составе биосферы имеются виды различного географического возраста - «эиогеноэлементы», или «биоэлементы», экосистем. Происходит эволюционная замена данных экогеноэ-лементов (биоэлементов), иногда в региональных рамках полная замена, с исчезновением предшественников.

Не могло не изменить естественных процессов массовое истребление человеком растений и животных, к примеру, плиоценовое исчезновение крупных животных, по всей вероятности, происходило не только из-за прямого преследования, но и в результате нарушения цепей питания, в целом пищевых сетей, что вело к преобразованию экосистем. Современное уничтожение видов, которое идет намного быстрее, чем во времена плиоценового перепромысла, должно вести и ведет к процессам, обратным к названным Э. И. Колчинским - снижается биомасса, продуктивность и информационность биосферы, меняется характер аккумуляции солнечной энергии в поверхностных оболочках планеты и т. п. Отсюда закономерности эволюции биосферы необходимо рассматривать как в прогрессивном, так и в регрессивном плане.

Как нам уже известно, эволюция живого началась с возникновения форм преджизни, а в дальнейшем и праорганизмов (рис. 12.44).

Рис. 12.44. Последовательность этапов симбиогенетического

происхождения клеток эукариот, наложенная на

родословное древо клеточных (кариот)

Примечание: показана неоднократность этапов симбиогенеза клетки эукариот

С этого геологического времени начал действовать принцип Реди: живое происходит только от живого, между живым и неживым веществом существует непроходимая граница, несмотря на то, что имеется постоянное взаи-модействие. В дальнейшем данное обобщение было заново сформулировано В. И. Вернадским в 1924 г. Именно этот принцип служит подоснов Д вой сложения экосистем в рамках таких закономерностей, как разграничение между живым и неживым. Взаимосвязь между ними формирует дополнительность и соответствие внутри биотического сообщества и связь биотоп - биоценоз.

В реальной эволюции принцип Реди проявляется весьма многообразно-способы видообразования, сложения био-, экобио- и экосистем многочисленны, хотя и подчиняются общим законам биологической микро- и макроэволюции, а также экогенез. На разных этапах развития биосферы процессы в ней не были одинаковыми, несмотря на то что шли по аналогичным схемам. Наличие ярко выраженного круговорота веществ, согласно закону глобального замыкания биогеохимического круговорота, является обязательным свойством биосферы любого этапа ее развития. Вероятно, это непреложный закон ее существования. Следует особо обратить внимание т увеличение доли биологического, а не геохимического, компонента в замыкании биогеохимического круговорота веществ. Ныне существующий тип биогеохимического обмена, состоящий из автотрофов-процудентов, гете-ротрофов-консументов и гетеротрофов-редуцентов со все большим ростом управляющего значения среднего звена, практически сложился в середине мелового периода. Если на первых этапах эволюции преобладал общебиосферный цикл - большой биосферный круг обмена (сначала только в пределах водной среды, а затем разделенный на два подцикла - суши и океана), то в дальнейшем он стал дробиться. Вместо относительно гомогенной биоты появились и все глубже дифференцировались экосистемы различного уровня иерархии и географической дислокации. Приобрели важное значение малые, биогеоценотические, обменные круги. Возник так называемый «обмен обменов» - стройная система биогеохимических круговоротов с высочайшим значением биотической составляющей.

Деятельность человека ведет к гомогенизации систем биосферы. Все больше «стираются» элементарные экосистемы, превращаясь в «монотонные» агросистемы, однообразные по биогеохимическим характеристикам культурные ландшафты. При этом снижается степень замкнутости биогеохимических циклов. Вероятно, в этом заключается секрет накопления в биосфере, и в первую очередь в атмосфере, малых газовых примесей, выброса тех веществ, которые, естественно, образуются в меньшем количестве и обычно ранее утилизировались биотой практически полностью. Чем больше организмы воздействовали на среду биосферы, тем интенсивнее шла эволюция. Этот принцип максимума эффекта внешней работы, закон саморазвития биосистем или закон исторического развития биологических систем, был сформулирован в 1935 г. Э. Бауэром: развитие биологических систем является результатом увеличения их внешней работы - воздействия этих систем на окружающую среду.

Физико-математическое подтверждение вышеназванных обобщений дает теорема порога возрастания энтропии в биосфере, или теорема К. С. Тринчера, выведенная в 1964 г., - продукция энтропии живым веществом биосферы возрастает до порога, определяемого уравнением:

, (12.9)

где t - абсолютное время;

r - единица биологического (системно характерного)времени;

S sp - специфическая энтропия одного вида живого,

е - основание натурального логарифма.

Важно здесь то, что минимум энтропии возникает при неравномерном распределении веществ в системе. Человеческая деятельность нарушает эту неравномерность, делает живое вещество гомогенным или даже, образно говоря, сдирает «живую кожу» с лика Земли, видоизменяет энтропийные и негэнтропийные процессы.

Антропогенное воздействие на окружающую среду оказалось деструктивным. Эволюция вынуждена идти экстенсивно, под воздействием внешних факторов, с темпом, диктуемым не ходом естественных явлений, а трансформацией природы человеком. Закон исторического развития биосистем работает не в полной мере или совсем не работает в силу того, что роль биотического воздействия на среду относительно снизилась. Преобладает преобразующая деятельность человека (рис. 12.45).

Рис. 12.45. Воздействие человека на природу на разных

стадиях развития производства:

I - период до времени использования огня; II - период со времени использования огня, появления и совершенствования примитивных орудий труда (100-10 тыс. лет до н. э.); III - период становления и развития земледелия и скотоводства (10 тыс. лет до н. э. - XIV в.); IV - период развития ремесел, появления и роста мануфактуры, расширения сельскохозяйственного производства (XV-XVIII вв.); V - период машинной индустрии, развития различных отраслей хозяйств (XIX в. - 1-я половина XX в.); VI - период научно-технической революции (2-я половина XX в.)

Здесь вслед за прямым уничтожением видов следует ожидать самодеструкции живого. Этот процесс фактически и идет в виде массового размножения отдельных организмов, разрушающих сложившиеся экосистемы. Насколько такое положение опасно для биосферы? Все зависит от темпов изменений. Следует учесть, что эволюция биосферы не была равномерной (рис. 12.46), и, несмотря на увеличение степени совершенства биогеохимического круговорота, этот процесс не шел гладко.

Рис. 12.46. Спираль времени

Закрученная в спираль лента графически изображает 4,5 млрд лет истории Земли. Отсчет времени начинается (нижний конец ленты) с формирования нашей планеты. Стрелками указаны ключевые моменты в эволюции жизни, обнаруживающие относительную молодость млекопитающих как целостной группы, не говоря уже о человеке, время существования которого - 1 млн лет или около того – указано на самом верху ленты. Одно деление нанесенной на ленте шкалы соответствует приблизительно 4,5 млн лет

Сегодня известны эволюционные катастрофы, происшедшие на нашей планете. Например, 650 млн лет назад эволюционно-экологический кризис привел к «внезапному» исчезновению многих видов одноклеточных водорослей. На рубеже 450 млн лет назад вымерло большинство панцирных обитателей океана, 230 млн лет назад исчезли многие виды гигантских амфибий, и, по эволюционным меркам, сравнительно быстро - 65 млн лет назад-вымерли гигантские рептилии и многие виды других групп организмов. Взгляды ученых на вымирание живых организмов неоднозначны. Так, вымирание гигантских рептилий связывают с похолоданием, прошедшим на Земле в результате падения огромного метеорита-астероида (предполагается, что он образовал крупнейший метеоритный кратер на территории современной Мексики). Похолодание привело к срыву инкубации яиц рептилий, а также могло дать преимущества для эволюции ночных групп животных и привести к исчезновению особо теплолюбивых дневных млекопитающих. Конечно, причины вымирания, его механизмы могли быть и другими. К едва заметным на взгляд человека, энергетическим перестройкам ведут даже незначительные изменения абиотической среды. Одно несомненно - вид никогда не исчезает один, всегда наблюдается изменение пищевых и информационных сетей. Происходит глобальная перестройка на всех уровнях экосистем. Одни виды исчезают, другие их замещают. Это явление находит отражение в правиле (принципе) катастрофического толчка: глобальная природная или природно-антропогенная катастрофа (сближение Земли с другим крупным космическим телом, столкновение с астероидом, резкое изменение климата, обеднение биоты и т. д.) всегда приводит к существенным эволюционным перестройкам, которые относительно прогрессивны для природы (адаптируют ее системы к новым условиям среды), но не обязательно полезны для вида или иной систематической категории, в том числе для человека и его хозяйственной деятельности. В связи с тем что отмечаются ускорения и замедления эволюции, действует и принцип прерывности и непрерывности развития биосферы: процесс медленного эволюционного изменения организмов закономерно прерывается фазами бурного развития и вымирания практически без переходных (палеонтологических) форм. Здесь интересен не столько механизм эволюции, а сам факт различного ускорения эволюционных процессов и их направленности. В случае, если ведущую роль в отборе играли верхние уровни природных систем и они же фактически направляли эволюцию, то антропогенные изменения биосферы, которые идут с большей скоростью, могут для нового ускорения эволюционных перестроек дать толчок в любой момент, вследствие чего произойдет капитальная перестройка экологических условий на Земле. Человечество как биологическое и социально-экономическое образование к таким преобразованиям едва ли готово. Нужны хотя бы общие показатели-рамки для установления, что является опасным, а что еще не грозит опасностью в ходе эволюции среды и жизни. По мнению ряда ученых, такими критическими показателями могут быть точки Пастера и правила одного и десяти процентов. Как известно из раздела 2.3, основной точкой Л. Пастера является момент, когда уровень содержания кислорода в атмосфере Земли в процессе эволюции составил 1% современного. Аэробная жизнь стала возможной с этого времени, что соответствует геохронологически архею. Считается, что накопление кислорода шло взрывообразно, в течение около 20 тыс. лет (рис. 12.47).

Рис. 12.47. Происхождение кислорода в атмосфере (по Е. Одуму, 1971)

Вторая точка Пастера - достижение также в архее содержания кислорода в атмосфере Земли около 10% современного. Создались предпосылки формирования озоносферы (рис. 12.48). Появилась возможность жизни на мелководьях, а в дальнейшем и на суше.

Рис. 12.48. Механизмы образования озонового слоя (внизу)

и его роль в атмосфере (вверху), по Е. А. Криксунову и др., 1995

Точки Пастера, как и закон пирамиды энергий Р. Линдемана (раздел 12.7), дали основание для формулировки правил одного и десяти процентов, получившего название закона Линдемана. Так называемое «магическое число» 1% возникает из соотношения возможностей потребления-энергии и «мощностей», необходимых для стабилизации среды. Доля возможного для биосферы потребления общей первичной продукции не превышает одного процента, что следует и из закона Р. Линдемана: около 1% чистой первичной продукции в энергетическом выражении потребляют позвоночные животные как консументы высших порядков, около 10% - беспозвоночные животные как консументы низших порядков, оставшуюся часть - бактерии и грибы-сапрофаги. Человечество, как только на грани XIX-XX вв.стало использовать большее количество продукции биосферы (в 90-х гг. XX в. - не менее 10%), так и перестал удовлетворяться принцип Ле Шателье-Брауна (примерно с 0,5% общей энергетики биосферы), рис. 12.49 и 12.50.

Рис. 12.49. Биосфера и человек-модель развития системы

их взаимоотношений (по Н. Ф. Реймерсу, 1990)

Примечание: толщина стрелок внутри кругов отражает силу воздействий; 1-3 - фазы преобразования природы человеком (промышленная, скотоводческо-земледельческая, индустриальная)

Принцип Ле Шателье-Брауна гласит, что при внешнем воздействии, выводящем систему из состояния устойчивого равновесия, равновесие смещается в том направлении, при котором эффект внешнего воздействия ослабляется. Так, растительность не давала прироста биомассы в соответствии с увеличением концентрации СО 2 и т. д. Прирост связанного растениями углерода наблюдался лишь в XIX в.

Достаточно признанным считается порог потребления 5-10% суммы вещества, который приводит с переходом через него к заметным изменениям в системах природы. Он в большей степени принят на эмпирическо-интуитивном уровне, без различия форм и характера управления в данных системах. Приближенно намечающиеся переходы для природных систем можно разделить на с организменным и консорционным типом управления и популяционных систем. Для первых порог выхода из стационарного состояния до 1 % от потока энергии или «нормы» потребления и порог саморазрушения составляет около 10% этой «нормы». Для популяционных систем превышение в среднем 10% объема изъятия приводит к выходу этих систем из стационарного состояния.

Обратим внимание на формулировку «выход из стационарного состояния». Для глобальной энергетической системы такой выход, вероятно, происходит в рамках 0,1-0,2% возмущения общепланетных процессов, т. е. значительно раньше, чем наступают сбои в действии принципа Ле Шателье-Брауна и заметные природные аномалии. В подтверждение вышесказанного можно указать на то, что опустынивание начало существенно расти еще в прошлом веке. Трудно доказать или опровергнуть антропогенность климатических процессов, происходящих в последние два столетия.

Эволюционные переходы в биосфере занимают относительно небольшое время. Правила усиления интеграции биологических систем И. И. Шмалъгаузе-на гласят, что в процессе эволюции биологические системы становятся все более интегрированными, со все более развитыми регуляторными механизмами, обеспечивающими такую интеграцию. Н. Ф. Реймерс в работе «Системные основы природопользования» указывал на то, что разрушение более трех уровней иерархии экосистем абсолютно необратимо и катастрофично. Для поддержания надежности биосферы обязательна множественность конкурентно взаимодействующих экосистем. Таким путем шла эволюция биосферы. Антропогенные же воздействия нарушают этот ход. Правило множественности экосистем вытекает и из правила экологического дублирования, и вообще из теории надежности. Здесь интеграция оказывается «скользящей» по иерархической лестнице экосистем.

Развитие биосферы в

Ноосферу - сферу разума

С появлением человеческого общества, под влиянием которого в современных условиях происходит дальнейшая эволюция биосферы, приводит к изменению качественного состава самой биосферы, к ее переходу в ноосферу. Под ноосферой понимают сферу взаимодействия природы и общества, в котором разумная деятельность людей становится главным, определяющим фактором развития. Название «ноосфера» происходит от греч. «ноос» - разум и таким образом обозначает сферу разума. Понятие ноосферы ввел в 1927 г. французский ученый-математик Э. Леруа, подразумевая под ним современную геологическую стадию развития биосферы. Э. Леруа отмечал, что пришел к такому представлению вместе со своим другом - геологом и палеонтологом П. Тейером де Шарденом, который в дальнейшем разработал собственное представление о ноосфере. В книге «Феномен человека» автор определил ноосферу как «новый покров», «мыслящий пласт, который, зародившись в конце третичного периода, разворачивается над миром растений и животных - вне биосферы и над ней».

Научное и практическое значение деятельности В. И. Вернадского как основателя учения о биосфере состоит в том, что он впервые во всеоружии знаний своего времени глубоко обосновал единство человека и биосферы. Сама живая материя как носитель разума, отмечал В. И. Вернадский, составляет небольшую часть биосферы по массе. Возникновение человеческого общества явилось результатом длительного развития живого вещества в пределах биосферы. Появление человека на Земле предопределило неизбежность возникновения нового состояния биосферы - переход ее в ноосферу, оболочку разума, охваченную целенаправленной деятельностью самого человека. При этом периоду сознательной деятельности человека предшествовал длительный период его дикого, полудикого и в целом стихийного существования. В пределах биосферы возникла первоначально сфера первобытной деятельности человеческого общества, которую нередко называют антропос-ферой. Начало ей положило расселение человека по всей поверхности суши в результате использования огня. Человек, овладев огнем, стал относительно независимым от климата и заселил все континенты, кроме Антарктиды. По свидетельству уникальных палеонтологических находок, человек, зародившись в дебрях Центральной Африки, освоил Европу, Азию, Австралию, а при дальнейшем совершенствовании своего организма достиг просторов Северной и Южной Америки. В ходе развития производительных сил антропосфера, охватывающая стихийную деятельность человеческого общества, объективно должна перейти в ноосферу - сферу сознательной деятельности. В современную эпоху становление ноосферы теснейшим образом связано с овладением различными формами движения материи - первоначально механической, потом тепловой, химической, атомно-ядерной. На очереди овладение биологическими формами движения - создание живых форм с помощью методов и средств биотехнологии и генной инженерии. С этим связано и возникновение новых по качеству круговоротов веществ в биосфере.

В. И. Вернадский, оценивая роль человеческого разума и научной мысли, делает следующие выводы.

1. Ход научного творчества является той силой, которой человек меняет биосферу, в которой он живет.

2. Это проявление изменения биосферы есть неизбежное явление, сопутствующее росту научной мысли.

3. Это изменение биосферы происходит независимо от че-ловеской воли, стихийно, как природный естественный процесс.

4. А так как среда жизни есть организованная оболочка планеты - биосфера, то вхождение в нее в ходе ее геологически длительного существования нового фактора ее изменения - научной работы человечества - есть природный процесс перехода биосферы в новую фазу, в новое состояние - ноосферу.

5. В переживаемый нами исторический момент мы видим это более ясно, чем могли видеть раньше. Здесь вскрываются перед нами «законы природы». Новые науки - геохимия и биогеохимия -дают возможность впервые выразить некоторые важные черты процесса математически.

Выводы о том, что биосфера неизбежно превратится в ноосферу, т. е. сферу, где разум человека будет играть доминирующую роль в развитии системы «человек - природа», получили название закона ноосферы В. И. Вернадского.

В дальнейшем эволюции биосферы и переходу ее в ноосферу были посвящены научные работы многих зарубежных и отечественных исследователей. Так, М. М. Камшилов (1974), рассматривая эволюцию биосферы, отмечал (рис. 12.51):

Рис. 12.51. Стадии эволюции биосферы, представленные

в виде последовательно вовлекаемых в круговорот

циклов (по М. М. Камшилову, 1974)

1 - в большом абиотическом круговороте веществ (А) возникла биосфера (Б);

2 - по мере развития жизни она расширяется;

3 - в ней появляется человеческое общество (Ч);

4 - человеческое общество начинает поглощать вещество и энергию не только через биосферу, но и непосредственноизабиотической среды (Т);

5 - биосфера, превратившаяся в ноосферу (Н), стала развиваться под контролем разумной деятельности человека (ноогенез); управление взаимными отношениями человеческого общества и природы осуществляется с помощью ноогенетики, жизнь, развиваясь по пути ноогенеза, все полнее осваивает вещество, энергию и потенциал информации неживой приро- | ды, распространяясь за пределы Земли (пунктирные линии).

В XX в.накопился огромный фактический материал по биосфере, по производственной деятельности человеческого общества. Рождающаяся ноосфера в своих главных проявлениях характеризуется следующими признаками (рис. 12.52).

Рис. 12.52. Геохимия ноосферы (по Д. И. Перельману, 1973)

Процессы, унаследованные от биосферы, но существенно измененные в ноосфере: 1 - биологический круговорот атомов; 2 - круговорот воды, водная и атмосферная миграция элементов; 3 - рассеяние элементов - отработка месторождений и т. д. Процессы, чуждые биосфере: 4 - получение металлов и других элементов, неустойчивых в термодинамическом поле биосферы; 5 - производство энергии на атомных электростанциях; б - синтез органических веществ, не существовавших в биосфере (полимеры и др.)

1. Возрастающим количеством механически извлекаемого материала литосферы - ростом разработки месторождений полезных ископаемых. В 90-х гг. оно превышало 100 млрд т в год, что в 4 раза больше массы материала, выносимого речным стоком в океан в процессе денудиции суши.

2. Массовым потреблением продуктов фотосинтеза прошлых геологических эпох, главным образом в энергетических целях. Химическое равновесие в биосфере в связи с этим смещается в сторону, противоположную глобальному процессу фотосинтеза, что неизбежно приводит к росту содержания углекислого газа в биосфере и уменьшению содержания свободного кислорода.

3. Процессы в ноосфере приводят к рассеиванию энергии Земли, а не к ее накоплению, что являлось характерным для биосферы до появления человека. Возникает важная энергетическая проблема.

4. В ноосфере создаются в массовом количестве вещества, которые ранее в биосфере отсутствовали. Происходит металлизация биосферы.

5. Характерно для ноосферы появление новых трансурановых химических элементов в связи с развитием ядерной технологии и ядерной энергетики. Овладение ядерной энергией происходит за счет деления тяжелых ядер. Предвидится в недалеком будущем получение термоядерной энергии за счет синтеза легких ядер, что позволит полностью отказаться от горючих полезных ископаемых в качестве источника энергии.

6. Ноосфера выходит за пределы биосферы в связи с огромным прогрессом научно-технической революции. Возникла космонавтика, которая обеспечивает выход человека за пределы планеты Земля. Происходит освоение космического, околокосмического пространства с непредвиденными возможностями. Создается принципиальная возможность создания искусственных биосфер на других планетах.

7. С образованием ноосферы планета Земля переходит в новое качественное состояние. Если биосфера - это сфера Земли, то ноосфера - это сфера Солнечной системы. Ноосфера в будущем станет областью Солнечной системы в познавательных и производственных целях человеческого общества.

Таким образом, хаотическое саморазвитие, основанное на процессах естественной саморегуляции, будет заменено разумной стратегией, базирующейся на прогнозно-плановых началах, регулировании процессов естественного развития. Это управление, несомненно, должно быть лишь «мягким» и следовать только законам природы и развития общества. В основе формирования ноосферы могут быть лишь благо и заинтересованное понимание, а не насилие и волюнтаризм. Человечеству придется решать массу тяжелых для нового времени проблем, но это будут иные, чем сегодняшние, проблемы.

Экосистема – это система, состоящая из живых существ и среды их обитания объединенных в единое функциональное целое.

Основные свойства:

1) способность осуществлять круговорот веществ

2) противостоять внешним воздействиям

3) производить биологическую продукцию

Виды экосистем:

1) микроэкосистемы (ствол дерева в стадии размножения, аквариум, небольшой водоем, капля воды и т. д.)

2) мезоэкосистема (лес, пруд, степь, река)

3) макроэкосистема (океан, континент, природная зона)

4) глобальная экосистема (биосфера в целом)

Ю. Одум предложил классификацию экосистемы на основе биомов. Это крупные природные экосистемы соответствующие физико-географическим зонам. Характеризуется каким – либо основным типом растительности или другой характерной особенностью ландшафта.

Типы биомов

1) наземные (тундра, тайга, степи, пустыни)

2) пресноводные (текучие воды: реки, ручьи, стоячие воды: озера, пруды, заболоченные воды: болота)

3) морские (открытый океан, воды шельфа, глубоководные зоны)

Понятие биогеоценоз и экосистема близки, но есть различия. Любой биогеоценоз это система. Экосистема может включать несколько биогеоценозов, но не каждая экосистема, есть биогеоценоз, поскольку не обладает всеми признаками его.

В экосистеме можно выделить два компонента - биотический и абиотический . Биотический делится на автотрофный (организмы, получающие первичную энергию для существования из фото- и хемосинтеза или продуценты) и гетеротрофный (организмы, получающие энергию из процессов окисления органического вещества - консументы и редуценты) компоненты, формирующие трофическую структуру экосистемы.

Единственным источником энергии для существования экосистемы и поддержания в ней различных процессов являются продуценты, усваивающие энергию солнца, (тепла, химических связей) с эффективностью 0,1-1 %, редко 3-4,5 % от первоначального количества. Автотрофы представляют первый трофический уровень экосистемы. Последующие трофические уровни экосистемы формируются за счёт консументов (2-й, 3-й, 4-й и последующие уровни) и замыкаются редуцентами, которые переводят неживое органическое вещество в минеральную форму (абиотический компонент), которая может быть усвоена автотрофным элементом.

Основные компоненты экосистемы

С точки зрения структуры в экосистеме выделяют:

1.климатический режим, определяющий температуру, влажность, режим освещения и прочие физические характеристики среды;

2.неорганические вещества, включающиеся в круговорот;

3.органические соединения, которые связывают биотическую и абиотическую части в круговороте вещества и энергии:

Продуценты - организмы, создающие первичную продукцию;

Макроконсументы, или фаготрофы, - гетеротрофы, поедающие другие организмы или крупные частицы органического вещества;

Микроконсументы (сапротрофы) - гетеротрофы, в основном грибы и бактерии, которые разрушают мёртвое органическое вещество, минерализуя его, тем самым возвращая в круговорот.

Последние три компонента формируют биомассу экосистемы.

С точки зрения функционирования экосистемы выделяют следующие функциональные блоки организмов (помимо автотрофов):

биофаги - организмы, поедающие других живых организмов,

сапрофаги - организмы, поедающие мёртвое органическое вещество.

Данное разделение показывает временно-функциональную связь в экосистеме, фокусируясь на разделении во времени образования органического вещества и перераспределении его внутри экосистемы (биофаги) и переработки сапрофагами. Между отмиранием органического вещества и повторным включением его составляющих в круговорот вещества в экосистеме может пройти существенный промежуток времени, например, в случае соснового бревна, 100 и более лет.

Все эти компоненты взаимосвязаны в пространстве и времени и образуют единую структурно-функциональную систему.

Термин биосфера был введён Жаном-Батистом Ламарком в начале XIX века, а в геологии предложен австрийским геологом Эдуардом Зюссом в 1875 году. Однако создание целостного учения о биосфере принадлежит русскому учёному Владимиру Ивановичу Вернадскому.

Биосфера - экосистема высшего порядка, объединяющая все остальные экосистемы и обеспечивающая существование жизни на Земле. В состав биосферы входят следующие «сферы»:

Атмосфера - это самая лёгкая из оболочек Земли, граничит с космическим пространством; через атмосферу происходит обмен вещества и энергии с космосом (внешним пространством).

Гидросфера - водная оболочка Земли. Почти такая же подвижная, как и атмосфера, она фактически проникает всюду.Вода - соединение с уникальными свойствами, одна из основ жизни, универсальный растворитель.

Литосфера - внешняя твёрдая оболочка Земли, состоит из осадочных и магматических пород. На данный момент под земной корой понимается верхний слой твёрдого тела планеты, расположенный выше границы Мохоровичича.

Биосфера тоже не замкнутая система, она фактически полностью обеспечивается энергией Солнца, небольшую часть составляет тепло самой Земли. Ежегодно Земля получает от Солнца около 1,3·1024 калорий. 40 % от этой энергии излучается обратно в космос, около 15 % идёт на нагрев атмосферы, почвы и воды, вся остальная энергия является видимым светом, который и является источником фотосинтеза.

В. И. Вернадский впервые чётко сформулировал понимание того, что всё живое на планете неразрывно связанно с биосферой и обязано ей своим существованием:

В. И. Вернадский

Живое вещество (совокупность всех организмов на Земле) составляет ничтожно малую часть от массы Земли, однако влияние живого вещества на процессы преобразования Земли огромно. Весь тот облик Земли, который наблюдается сейчас, не был бы возможен без миллиардов лет жизнедеятельности живого вещества.

На данный момент сам человек, как часть живого вещества, является существенной геологической силой и значительно изменяет направления процессов, происходящих в биосфере, тем самым ставя под угрозу своё существование:

В ярком образе экономист Л. Брентано иллюстрировал планетную значимость этого явления. Он подсчитал, что, если бы каждому человеку дать один квадратный метр и поставить всех людей рядом, они не заняли бы даже всей площади маленького Боденского озера на границе Баварии и Швейцарии. Остальная поверхность Земли осталась бы пустой от человека. Таким образом, всё человечество, вместе взятое, представляет ничтожную массу вещества планеты. Мощь его связана не с его материей, но с его мозгом, с его разумом и направленным этим разумом его трудом.

В гуще, в интенсивности и в сложности современной жизни человек практически забывает, что он сам и всё человечество, от которого он не может быть отделён, неразрывно связаны с биосферой - с определённой частью планеты, на которой они живут. Они - геологически закономерно связаны с её материально-энергетической структурой.

Человечество, как живое вещество, неразрывно связано с материально-энергетическими процессами определённой геологической оболочки Земли - с её биосферой. Оно не может физически быть от неё независимым ни на одну минуту.

Лик планеты - биосфера - химически резко меняется человеком сознательно и главным образом бессознательно. Меняется человеком физически и химически воздушная оболочка суши, все её природные воды.

В. И. Вернадский.

Искусственные экосистемы

Пашня - типичная искусственная экосистема, неразрывно соседствует с естественным лугом

Искусственные экосистемы - это экосистемы, созданные человеком, например, агроценозы, природно-хозяйственные системы или Биосфера 2.

Искусственные экосистемы имеют тот же набор компонентов, что и естественные: продуценты, консументы и редуценты, но есть существенные отличия в перераспределении потоков вещества и энергии. В частности, созданные человеком экосистемы отличаются от естественных следующим:

    меньшим числом видов и преобладанием организмов одного или нескольких видов (низкая выравненность видов);

    невысокой устойчивостью и сильной зависимостью от энергии, вносимой в систему человеком;

    короткими цепями питания из-за небольшого числа видов;

    незамкнутым круговоротом веществ вследствие изъятия урожая (продукции сообщества) человеком, тогда как естественные процессы наоборот стремятся включить в круговорот как можно большую часть урожая

Без поддержания энергетических потоков со стороны человека в искусственных системах с той или иной скоростью восстанавливаются естественные процессы и формируется естественная структура компонентов экосистемы и вещественно-энергетических потоков между ними.

биосфера экосистема круговорот биогеохимический

Экосистема представляет собой совокупность организмов и среды их обитания, объединенных круговоротом веществ и потоками энергии. Целостность экосистем поддерживается благодаря существованию различных трофических уровней организмов: продуцентов, консументов, редуцентов. Экосистема в отличие от биогеоценоза, который представляет собой совокупность совместно существующих на однородной территории популяций растений, животных, грибов, микроорганизмов и среды их обитания - не имеет четко определенных границ.

Окружающая среда для человека представляет глобальную (и не только в рамках нашей одной планеты) метамегасистему, состоящую из двух, тесно взаимодействующих и взаимосвязанных мегасистем природной и техногенной сред.

Природная среда включает четыре основные макросистемы (геосферы) Концепции современного естествознания: учебное пособие / В.О. Голубинов под ред. С.И. Самыгина. - 8-е изд. - Ростов на/Дону: Феникс, 2008. - 413с. (Высшее образование).:

Атмосфера наиболее легкая оболочка Земли, граничащая с космическим пространством, через нее осуществляется обмен веществ нашей планеты с Космосом. Большая часть массы атмосферы состоит из азота, кислорода и инертного газа аргона. И все же одним из важнейших компонентов атмосферы является озон, его образование связано с поглощением радиации Солнца, которая губительна для живых организмов;

Гидросфера - это водная оболочка Земли, которая включает Мировой океан, воды суши, подземные воды. Все они играют главную роль в жизнедеятельности человека и живых организмов. Как писал, В.И. Вернадский - «Вода стоит особняком в истории нашей планеты. Нет природного тела, которое могло бы сравниться с ней по влиянию на ход основных, самых грандиозных геологических процессов. Все земное вещество…..ею проникнуто и охвачено. Она чиста и бесцветна и так нужна человечеству;

Биосфера - «область жизни», пространство на земном шаре, в котором распространены живые существа. Человечество как живое вещество непрерывно связано с материально-энергетическими процессами определенной геологической оболочки Земли - с ее биосферой. Оно не может физически быть от нее независимым ни на одну минуту. Всю совокупность организмов (растений, животных, микробов) называют биотой.

Техногенная среда также состоит из нескольких макросистем, включающих искусственные сооружения и здания, города, городские агломерации, промышленные зоны и регионы и так далее.

Исходя из взгляда на биосферу как глобальную экосистему, все многообразие видов деятельности человека в биосфере приводит к изменениям:

  • - состава биосферы, круговоротов и баланса слагающих ее веществ;
  • - энергетического баланса биосферы, биотов.

Направленность и степень этих изменений таковы, что самим человеком им дано название экологического кризиса.

Согласно данной теории биосфера выполняет несколько функций:

  • - кислородная, т.к. часть биосферы выделяет кислород;
  • - почвообразующая;
  • - хемосинтезирующая - это синтез органических веществ из неорганических, возможный только в бактериях (например, только бактерии способны аккумулировать азот из воздуха);
  • - круговорот веществ (атомов) в природе, в котором участвует вся атмосфера в целом;
  • - структурная - некоторые живые организмы способны изменять облик Земли и т.д.

По Вернадскому работа живого вещества в биосфере может быть выражена в двух основных формах:

  • - I род геологической деятельности проявляется в обмене веществ внутри живых организмов, в результате, которого происходит постоянных кругооборот атомов. При этом большое значение имеет количество пропускаемых веществ через тот или иной живой организм. По некоторым данным установлено, что через организм человека за всю его жизнь проходит около: 75 т воды, 17 т углеводов, 2,5 т белка, 1,5 т жира.
  • - сущность II рода геологической деятельности проявляется только в тех экосистемах, где хорошо развит почвенный покров, который позволяет создавать норы, укрытия, т.е. разрыхлять почву.

Биосфера (от греч. bios - жизнь, sphaira - шар) - область системного взаимодействия живого и косного вещества планеты. Она представляет собой глобальную экосистему - совокупность всех биогеоценозов (экосистем) нашей планеты.

Заслуга создания целостности учения о биосфере принадлежит В. И. Вернадскому. Используя этот термины, он создал науку «биосфера», ввел понятие «живое вещество» - совокупность всех живых организмов, а также отвел живым организмам роль главнейшей преобразующей силы планеты Земля, учитывая деятельность организмов не только в настоящее время, но и в прошлом. Поэтому биосфера - это все пространство, где существует или когда-либо существовала жизнь, т. е. где встречаются живые организмы или продукты их жизнедеятельности.

Жизнь в биосфере зависит от потока энергии и круговорота веществ между биотическим и абиотическим компонентами. Круговороты веществ называются биогеохимическими циклами. Существование этих циклов обеспечивается энергией Солнца. Наглядное представление о путях прохождения энергии дают пищевые цепи. Каждое их звено – это определенный трофический уровень. Первый трофический уровень занимают автотрофы , или продуценты. Организмы второго трофического уровня называются первичными консументами , третьего – вторичными консументами и т.д. Продуценты – это растения, цианобактерии (сине-зеленые «водоросли») и некоторые другие типы бактерий. Консументы зависят прямо (травоядные) или косвенно (хищники) от величины чистой первичной продукции как источника энергии и веществ. Прохождение энергии через живое вещество представляет собой путь от света к продуцентам, далее к консументам, а от тех и других – к теплу. Этот путь – поток, а не круговорот, поскольку в виде тепла энергия рассеивается в окружающей среде и не может снова использоваться для фотосинтеза. Таким образом, энергетический поток через живое вещество – это процесс потери накопленной организмами энергии. Поддержание динамического равновесия между биотическим и абиотическим компонентами биосферы является необходимым условием существования всех форм жизни. Воздействие человека на биосферу, сопровождающееся ухудшением качества воды, сведением лесов или выбросом в атмосферу загрязняющих веществ, может создать угрозу жизни на Земле Свойства биосферы .

Биосфере, как и составляющим ее другим экосистемам, более низкого ранга, присуща система свойств, которые обеспечивают ее функционирование, саморегулирование, устойчивость и другие параметры. Свойства:

1.Биосфера - централизованная система . Центральным звеном ее выступают живые организмы (живое вещество).

2.Биосфера - открытая система . Ее существование немыслимо без поступления энергии извне. Она испытывает воздействие космических сил, прежде всего солнечной активности.

3. Биосфера - саморегулирующаяся система , для которой, характерна организованность. В настоящее время это свойство называют гомеостазом, понимая под ним способность возвращаться в исходное состояние, гасить возникающие возмущения включением ряда механизмов.

4. Биосфера - система , характеризующаяся большим разнообразием . Это и разные среды жизни (водная, наземно-воздушная, почвенная, организменная); и разнообразие природных зон, различающихся по климатическим, гидрологическим, почвенным, биотическим и другим свойствам; и наличие регионов, различающихся по химическому составу; и, самое главное, объединение в рамках биосферы большого количества элементарных экосистем со свойственным им видовым разнообразием.

5. Важное свойство биосферы - наличие в ней механизмов , обеспечивающих круговорот веществ и связанную с ним неисчерпаемость отдельных химических элементов и их соединений. Только благодаря круговоротам и наличию неисчерпаемого источника солнечной энергии обеспечивается непрерывность процессов в биосфере и ее потенциальное бессмертие.

структура биосферы .

Биосфера включает в себя:

аэробиосферу - нижнюю часть атмосферы;

гидробиосферу - всю гидросферу;

литобиосферу - верхние горизонты литосферы (твердой земной оболочки).

Экосистема – это система, состоящая из живых существ и среды их обитания объединенных в единое функциональное целое.

Основные свойства:

1) способность осуществлять круговорот веществ

2) противостоять внешним воздействиям

3) производить биологическую продукцию

Виды экосистем:

1) микроэкосистемы (ствол дерева в стадии размножения, аквариум, небольшой водоем, капля воды и т. д.)

2) мезоэкосистема (лес, пруд, степь, река)

3) макроэкосистема (океан, континент, природная зона)

4) глобальная экосистема (биосфера в целом)

Ю. Одум предложил классификацию экосистемы на основе биомов. Это крупные природные экосистемы соответствующие физико-географическим зонам. Характеризуется каким – либо основным типом растительности или другой характерной особенностью ландшафта.

Типы биомов

1) наземные (тундра, тайга, степи, пустыни)

2) пресноводные (текучие воды: реки, ручьи, стоячие воды: озера, пруды, заболоченные воды: болота)

3) морские (открытый океан, воды шельфа, глубоководные зоны)

Понятие биогеоценоз и экосистема близки, но есть различия. Любой биогеоценоз это система. Экосистема может включать несколько биогеоценозов, но не каждая экосистема, есть биогеоценоз, поскольку не обладает всеми признаками его.

В экосистеме можно выделить два компонента - биотический и абиотический . Биотический делится на автотрофный (организмы, получающие первичную энергию для существования из фото- и хемосинтеза или продуценты) и гетеротрофный (организмы, получающие энергию из процессов окисления органического вещества - консументы и редуценты) компоненты, формирующие трофическую структуру экосистемы.

Единственным источником энергии для существования экосистемы и поддержания в ней различных процессов являются продуценты, усваивающие энергию солнца, (тепла, химических связей) с эффективностью 0,1-1 %, редко 3-4,5 % от первоначального количества. Автотрофы представляют первый трофический уровень экосистемы. Последующие трофические уровни экосистемы формируются за счёт консументов (2-й, 3-й, 4-й и последующие уровни) и замыкаются редуцентами, которые переводят неживое органическое вещество в минеральную форму (абиотический компонент), которая может быть усвоена автотрофным элементом.

Основные компоненты экосистемы

С точки зрения структуры в экосистеме выделяют:

1.климатический режим, определяющий температуру, влажность, режим освещения и прочие физические характеристики среды;

2.неорганические вещества, включающиеся в круговорот;

3.органические соединения, которые связывают биотическую и абиотическую части в круговороте вещества и энергии:

Продуценты - организмы, создающие первичную продукцию;

Макроконсументы, или фаготрофы, - гетеротрофы, поедающие другие организмы или крупные частицы органического вещества;

Микроконсументы (сапротрофы) - гетеротрофы, в основном грибы и бактерии, которые разрушают мёртвое органическое вещество, минерализуя его, тем самым возвращая в круговорот.

Последние три компонента формируют биомассу экосистемы.

С точки зрения функционирования экосистемы выделяют следующие функциональные блоки организмов (помимо автотрофов):

биофаги - организмы, поедающие других живых организмов,

сапрофаги - организмы, поедающие мёртвое органическое вещество.

Данное разделение показывает временно-функциональную связь в экосистеме, фокусируясь на разделении во времени образования органического вещества и перераспределении его внутри экосистемы (биофаги) и переработки сапрофагами. Между отмиранием органического вещества и повторным включением его составляющих в круговорот вещества в экосистеме может пройти существенный промежуток времени, например, в случае соснового бревна, 100 и более лет.

Все эти компоненты взаимосвязаны в пространстве и времени и образуют единую структурно-функциональную систему.

Термин биосфера был введён Жаном-Батистом Ламарком в начале XIX века, а в геологии предложен австрийским геологом Эдуардом Зюссом в 1875 году. Однако создание целостного учения о биосфере принадлежит русскому учёному Владимиру Ивановичу Вернадскому.

Биосфера - экосистема высшего порядка, объединяющая все остальные экосистемы и обеспечивающая существование жизни на Земле. В состав биосферы входят следующие «сферы»:

Атмосфера - это самая лёгкая из оболочек Земли, граничит с космическим пространством; через атмосферу происходит обмен вещества и энергии с космосом (внешним пространством).

Гидросфера - водная оболочка Земли. Почти такая же подвижная, как и атмосфера, она фактически проникает всюду.Вода - соединение с уникальными свойствами, одна из основ жизни, универсальный растворитель.

Литосфера - внешняя твёрдая оболочка Земли, состоит из осадочных и магматических пород. На данный момент под земной корой понимается верхний слой твёрдого тела планеты, расположенный выше границы Мохоровичича.

Биосфера тоже не замкнутая система, она фактически полностью обеспечивается энергией Солнца, небольшую часть составляет тепло самой Земли. Ежегодно Земля получает от Солнца около 1,3·1024 калорий. 40 % от этой энергии излучается обратно в космос, около 15 % идёт на нагрев атмосферы, почвы и воды, вся остальная энергия является видимым светом, который и является источником фотосинтеза.

В. И. Вернадский впервые чётко сформулировал понимание того, что всё живое на планете неразрывно связанно с биосферой и обязано ей своим существованием:

В. И. Вернадский

Живое вещество (совокупность всех организмов на Земле) составляет ничтожно малую часть от массы Земли, однако влияние живого вещества на процессы преобразования Земли огромно. Весь тот облик Земли, который наблюдается сейчас, не был бы возможен без миллиардов лет жизнедеятельности живого вещества.

На данный момент сам человек, как часть живого вещества, является существенной геологической силой и значительно изменяет направления процессов, происходящих в биосфере, тем самым ставя под угрозу своё существование:

В ярком образе экономист Л. Брентано иллюстрировал планетную значимость этого явления. Он подсчитал, что, если бы каждому человеку дать один квадратный метр и поставить всех людей рядом, они не заняли бы даже всей площади маленького Боденского озера на границе Баварии и Швейцарии. Остальная поверхность Земли осталась бы пустой от человека. Таким образом, всё человечество, вместе взятое, представляет ничтожную массу вещества планеты. Мощь его связана не с его материей, но с его мозгом, с его разумом и направленным этим разумом его трудом.

В гуще, в интенсивности и в сложности современной жизни человек практически забывает, что он сам и всё человечество, от которого он не может быть отделён, неразрывно связаны с биосферой - с определённой частью планеты, на которой они живут. Они - геологически закономерно связаны с её материально-энергетической структурой.

Человечество, как живое вещество, неразрывно связано с материально-энергетическими процессами определённой геологической оболочки Земли - с её биосферой. Оно не может физически быть от неё независимым ни на одну минуту.

Лик планеты - биосфера - химически резко меняется человеком сознательно и главным образом бессознательно. Меняется человеком физически и химически воздушная оболочка суши, все её природные воды.

В. И. Вернадский.

Искусственные экосистемы

Пашня - типичная искусственная экосистема, неразрывно соседствует с естественным лугом

Искусственные экосистемы - это экосистемы, созданные человеком, например, агроценозы, природно-хозяйственные системы или Биосфера 2.

Искусственные экосистемы имеют тот же набор компонентов, что и естественные: продуценты, консументы и редуценты, но есть существенные отличия в перераспределении потоков вещества и энергии. В частности, созданные человеком экосистемы отличаются от естественных следующим:

    меньшим числом видов и преобладанием организмов одного или нескольких видов (низкая выравненность видов);

    невысокой устойчивостью и сильной зависимостью от энергии, вносимой в систему человеком;

    короткими цепями питания из-за небольшого числа видов;

    незамкнутым круговоротом веществ вследствие изъятия урожая (продукции сообщества) человеком, тогда как естественные процессы наоборот стремятся включить в круговорот как можно большую часть урожая

Без поддержания энергетических потоков со стороны человека в искусственных системах с той или иной скоростью восстанавливаются естественные процессы и формируется естественная структура компонентов экосистемы и вещественно-энергетических потоков между ними.