Электрические схемы бесплатно. Схема частотомера из калькулятора, журнал радио. Простой стрелочный частотомер Цифровой частотомер своими руками

Если уж браться за создание цифрового частотомера, то делать сразу универсальный измерительный прибор, способный мерять частоты не до пары десятков мегагерц (что свойственно ), а до 1000 МГц . При всём этом, схема не сложнее стандартной, с использованием pic16f84 . Отличие лишь в установке входного делителя, на специализированной микросхеме SAB6456 . Этот электронный счетчик будет полезен для измерения частоты различного беспроводных оборудования, особенно передатчиков, приемников и генераторов сигналов в диапазонах УКВ.

Технические характеристики частотомера

- Напряжение питания: 8-20 V
- Потребляемый ток: 80 мА макс. 120 мА
- Входная чувствительность: макс. 10 мВ в 70-1000 МГц диапазон
- Период измерения: 0,08 сек.
- Частота обновления информации: 49 Гц
- Диапазон: 0,0 до 999,9 МГц, разрешение 0,1 МГц.

Особенности и преимущества схемы. Быстрая работа - короткий период измерения. Высокая чувствительность входного сигнала в диапазонах СВЧ. Переключаемое промежуточное смещение частоты для использования его совместно с приемником - в качестве цифровой шкалы.

Принципиальная схема самодельного частотомера на PIC

Список деталей частотомера

R1 - 39 k
R2 - 1 k
R3-R6 - 2,2 k
R7-R14 - 220
C1-C5, C6 - 100-n mini
C2, C3, C4 - 1 n
C7 - 100 ед.
C8, C9 - 22 p
IC1 - 7805
IC2 - SAB6456 (U813BS)
IC3 - PIC16F84A
T1 - BC546B
T2-T5 - BC556B
D1, D2 - BAT41 (BAR19)
D3 - HD-M514RD (красный)
X1 - 4.000 МГц кварц


Вся необходимая информация по прошивке микроконтроллера, а также полное описание микросхемы SAB6456, находятся в архиве . Данная схема многократно испытана и рекомендована к самостоятельному повторению.

Поводом повторения данного частотомера и приставки для определения параметров неизвестных контуров послужила конструкция приемника Р-45. В дальнейшем этот "мини комплекс" облегчит намотку и настройку ВЧ контуров, контроль опорных точек генераторов и так далее. Итак, представленный в данной статье частотомер позволяет измерять частоту от 10 Гц до 60 МГц с точностью 10 Гц. Это позволяет использовать данный прибор для самого широкого применения, например измерять частоту задающего генератора, радио приёмника и передатчика, функционального генератора, кварцевого резонатора. Частотомер обеспечивает хорошие параметры и обладает хорошей входной чувствительностью, благодаря наличию усилителя и TTL-преобразователя. Это позволяет измерять частоту кварцевых резонаторов. Если использовать дополнительный делитель частоты, максимальная частота измерения может достигать 1 ГГц и выше.

Схема частотомера довольно простая, большинство функций выполняет микроконтроллер. Единственное, для микроконтроллера необходим усилительный каскад, чтобы увеличить входное напряжения с 200-300 мВ до 3 В. Транзистор, включенный по схеме с общим эмиттером, обеспечивает псевдо-TTL сигнал, поступающий на вход микроконтроллера. В качестве транзистора необходим какой-нибудь "быстрый" транзистор, я применил BFR91 - отечественный аналог КТ3198В.

Напряжение Vкэ устанавливается на уровне 1.8-2.2 вольта резистором R3* на схеме. У меня это 22 кОм, однако может потребоваться корректировка. Напряжение с коллектора транзистора прикладывается к входу счетчика/таймера микроконтроллера PIC, через последовательное сопротивление 470 Ом. Для выключения измерения, в PIC задействываются встроенные pull-down резисторы. В PIC реализован 32-битный счетчик, частично аппаратно, частично софтово. Подсчет начинается после того, как выключаются встроенные pull-down резисторы микроконтроллера, продолжительность составляет точно 0.4 секунды. По истечении этого времени, PIC делит полученное число на 4, после чего прибавляет или отнимает соответствующую промежуточную частоту, для получения реальной частоты. Полученная частота конвертируется для отображения на дисплее.

Для того, чтобы частотомер работал правильно, его необходимо откалибровать. Проще всего это сделать так: подключить источник импульсов с заранее точно известной частотой и вращая подстроечный конденсатор выставить необходимые показания. Если данный метод не подходит, то можно воспользоваться "грубой калибровкой". Для этого, выключите питание прибора, а 10 ножку микроконтроллера подсоедините на GND. Затем, включите питание. МК будет измерять и отображать внутреннюю частоту.

Если вы не можете подстроить отображаемую частоту (путем подстройки конденсатора 33 пФ), то кратковременно подсоедините вывод 12 или 13 МК к GND. Возможно, что это нужно будет сделать несколько раз, так как программа проверяет эти выводы только один раз за каждое измерение (0.4 сек). После калибровки, отключите 10 ногу микроконтроллера от GND, не выключая при этом питания прибора, чтобы сохранить данные в энергонезависимой памяти МК.

Печатную плату рисовал под свой корпус. Вот что получилось, при подаче питания выскакивает кратковременно заставка и частотомер переходит в режим измерения, тут на входе нет ни чего:

Схема приставки контур

Автор статьи схему доработал относительно первоисточника, посему оригинал не прилагаю, плата и файл прошивки в общем архиве . Теперь возьмем неизвестный нам контур - приставка для измерения резонансной частоты контура.

Вставляем в не совсем пока удобную панельку, для проверки девайса сойдет, смотрим результат измерений:

Частотомер калибровался и тестировался на кварцевом генераторе 4 МГц, результат был зафиксирован такой: 4,00052 МГц. В корпусе частотомера решил вывести питание и на приставку +9 Вольт, для этого был сделан простой стабилизатор +5 В, +9 В, его плата на фото:

Забыл добавить, плата частотомера разведена немного к верху задом - для удобства съёма pic микроконтроллера, вращении подстроечного конденсатора, минимальной длины дорожек на LCD.

Теперь частотомер выглядит вот так:

Единственное, не стал исправлять пока ошибку в надписи мгГц, а так всё на 100% рабочее. Сборка и испытание схемы - ГУБЕРНАТОР .

Обсудить статью КАК СДЕЛАТЬ ИЗМЕРИТЕЛЬ ЧАСТОТЫ

На базе описанного формирователя импульсов можно собрать еще один прибор - частотомер. Назначение его отражено в названии - измерение частоты исследуемого сигнала.


При поступлении на вход элемента DD1.2 последовательности прямоугольных импульсов на выходе формирователя появляется последовательность отрицательных импульсов, длительность которых зависит от емкости конденсаторов, подключенных в данный момент к резистору R1 и входу элемента DD1.2. В течение действия каждого отрицательного импульса через один из резисторов R2-R4 и микроамперметр РА1 проходит ток. После окончания одного импульса и до начала следующего стрелка механической системы микроамперметра за счет инерционности не успевает возвращаться в начальное положение. Таким образом, чем больше частота импульсов, тем больше угол отклонения стрелки. Причем зависимость эта линейная, что значительно облегчает калибровку прибора.

Диапазон частот, измеряемых этим прибором (20...20000 Гц), разбит на три поддиапазона: 20...200, 200...2000, 2000...20000 Гц. Поддиапазон измерения выбирается переключателем SA1 и зависит от емкости подключенного конденсатора.

При калибровке прибора на его вход подают последовательность импульсов с частотой, соответствующей наибольшей частоте поддиапазона, и подбором сопротивления резисторов R2-R4 устанавливают стрелку на конечную отметку шкалы.

Для удобства эксплуатации в качестве микроамперметра РА1 использовать авометр, включив его в режим измерения постоянного тока на пределе 100... 150 мкА.

Первая конструкция частотомера состоит из микроконтроллера PIC16F84 и делителя частоты на 10 на счетчике 193ИЕ2. Выбор нужного диапазона происходит сдвоенным тумблером SA1. В первом положение, входной сигнал меняет делитель и сразу проходит на вход микроконтроллера. Это дает возможность измерять частоту до 50 МГц.

Основой второй схемы частотомера является эмикроконтроллер PIC16F84A, который с помощью импульсов внешнего сигнала, обрабатывает полученные результаты измерений и вывод их на ЖК дисплей. Кроме того, микроконтроллер периодически опрашивает кнопки (SB1-SB4) и управляет питанием частотомера.

Особенностью данной конструкции частотомера на микроконтроллере является то, что она работает вместе с компьютером и подсоединена к материнской плате через разъем IRDA. От этого же разъема конструкция получает питание

Еще одна схема частотомера

Этот частотомер сделан также на одной м.с, минимуме дискретных элементов и может выполнять следующие измерения: частоты, периода, отношения частот, временного интервала, счёт (работать как накапливающий счётчик), производить контроль от внутреннего генератора.

Результаты всех измерений выводятся в цифровой форме на восьмиразрядном светодиодном индикаторе. Максимальная измеряемая частота 10 МГц. В иных режимах измерения максимальная входная частота -2,5 МГц.

Упростить электрическую схему частотомера позволяет использование известной и популярной за рубежом недорогой микросхемы типа 7216А. Она представляет собой универсальный декадный счётчик со встоенным задающим генератором, 8-разрядным счётчиком данных с защёлкой, дешифратором для 7-сегментного индикатора с восемью выходными усилителями для светодиодных индикаторов. Схема прибора изображена на рисунке. На выводы 28 (канал I) или 2 (канал II) подают измеряемую импульсную последовательность ТТЛ уровня. С выводов 4-7, 9-12 идёт управление сегментами светодиодных индикаторов. Выводы 15-17,19-23 используются для мультиплексного управления светодиодными индикаторами, а выводы 15,19-23, кроме того, используются для выбора диапазона и режима измерений, с них сигналы через переключатели и RC цепи подаются на выводы 14 и 3. Вывод 27 используется для фиксации показаний, а вывод 13 для сброса. Кварцевый резонатор с частотой 10 МГц подключают к выводам 25, 26. Питается прибор от источника +5 В (аккумулятор, батарея сухих элементов, стабилизированый сетевой блок), собственное потребление ИМС не превышает 5 мА, а максимальный ток светодиодов может составлять до 400 мА.

Прибор прост в эксплуатации. Управление сводится к выбору режима работы переключателем SB4: Частотомер, Измеритель периода, Измеритель отношения частот, Измеритель временного интервала, Накапливающий счётчик, Контроль, а также к выбору диапазона измерений переключателем SB3 (по младшему разряду): 1. 0,01 с/1 Гц, 2. 0,1 с/10 Гц, 3. 1 с/100 Гц, 4. 10 с/1 кГц.

Кроме микросхемы 7216А в приборе использованы резисторы мощностью 0,125 Вт, конденсаторы С1-СЗ, С6, С7 керамические, светодиодный индикатор собирается из восьми цифровых 7-сегментных индикаторов с общим анодом АЛС321Б, АЛС324Б, АЛС337Б, АЛС342Б, КИПЦ 01Б, КИПЦ 01 Г. Кварц малогабаритный на 10 МГц.

Для нормальной работы схемы на входы необходимо подавать сигнал ТТЛ уровня. Порог переключения по входам микросхемы 2 В, поэтому для измерений малых сигналов вход прибора нужно подключить к выходу усилителя-формирователя, который может быть реализован по любой из известных схем. Главное, чтобы он с одинаковым успехом преобразовывал в прямоугольные импульсы как сигналы с частотой 1 Гц, так и 10 МГц. Желательно иметь большое входное сопротивление этого усилителя. При разработке этой схемы использовались данные производителя микросхемы ICM7216A


Этот прибор имеет не только большой верхний предел измеряемой частоты, но и ряд дополнительных функций. Он измеряет уход частоты от начального значения, длительность импульсов и пауз между ними, подсчитывает число импульсов. Его можно использовать и как делитель частоты входного сигнала с задаваемым в широких пределах коэффициентом деления.

Предлагаемый частотомер содержит шесть микросхем - компаратор напряжения AD8611ARZ , синтезатор частоты LMX2316TM , D-триггер 74HC74D , селектор-мультиплексор 74HC151D , микроконтроллер PIC16F873A-1/SP и интегральный стабилизатор напряжения TL7805. Результаты измерения он выводит на символьный ЖКИ WH1602B .

Основные технические характеристики

Интервал измеряемой частоты

импульсов с уровнями ТТЛ, Гц...............0,1...8·10 7

аналоговых периодических сигналов произвольной формы напряжением более 100 мВэфф, Гц.....................1...8·10 7

синусоидальных ВЧ-сигналов напряжением более 100 мВэфф, МГц...............20...1250

Длительность счёта при измерении частоты, мс......10 4 , 10 3 , 100, 10

Интервал измеряемой длительности импульсов, мкс........10...10 6

Максимальная частота следования подсчитываемых импульсов, кГц...............100

Максимальное число подсчитанных импульсов.....100 000 000

Измеряемый уход частоты

импульсов на входе ТТЛ или сигнала на аналоговом входе, Гц..........±1...±10 6

сигнала на входе ВЧ, кГц...................±1...±10 5

Коэффициент деления частоты сигнала

поданного на аналоговый вход..............3 - 16383

поданного на вход ВЧ................1000 - 65535

Уровни выходных импульсов делителя частоты.............ТТЛ

Длительность выходных импульсов делителя частоты, мкс.......................0,5

Напряжение питания (постоянное), В...................9.16

Потребляемый ток, мА......100...150

При выключении прибора установленные режимы его работы микроконтроллер запоминает в своём EEPROM и восстанавливает при включении.

Схема частотомера изображена на рис. 1. Тактовый генератор микроконтроллера DD3 стабилизирован кварцевым резонатором ZQ1. Подстроечный конденсатор C13 позволяет установить тактовую частоту в точности равной 4 МГц. Стабилизатор напряжения +5 В собран на микросхеме DA2. Подстроечным резистором R23 регулируют яркость подсветки экрана ЖКИ HG1. Оптимальную контрастность изображения на нём устанавливают подстроечным резистором R21.

Рис. 1. Схема частотомера

Кнопками SB1-SB3 управляют прибором. Кнопка SB1 служит для выбора измеряемого параметра. Кнопкой SB2 выбирают разъём, на который подают измеряемый сигнал. В зависимости от частоты и формы входного сигнала это может быть XW1 (импульсы логических уровней частотой 0,1 Гц...80 МГц), XW2 (аналоговые сигналы произвольной формы частотой 1 Гц...80 МГц) или XW3 (сигналы частотой 20...1250 МГц). Кнопкой SB3 запускают и останавливают измерение в режимах счётчика импульсов и измерения ухода частоты. Длительным (более 1 с) нажатием на эту кнопку переходят из режимаизмерения частоты в режим её деления и вывода результата на разъём XW1. Когда кнопки не нажаты, на входах микроконтроллера, с которыми они соединены, резисторы R12-R14 поддерживают высокие уровни.

Резисторы R4 и R6 создают постоянное смещение около 100 мВ на неинвертирующем входе компаратора DA1. Резисторы R5 и R7 - цепь положительной обратной связи, нужной для получения гистерезиса в характеристике переключения компаратора. Диоды VD1 и VD2 вместе с резистором R2 образуют двухсторонний ограничитель входного напряжения на инвертирующем входе компаратора.

Микросхема DD1, основное назначение которой - работа в синтезаторах частоты диапазона 1,2 ГГц, содержит два делителя частоты с переменным коэффициентом деления, которые и используются в описываемом приборе для деления частоты входных сигналов, подаваемых на разъёмы XW2 и XW3, в заданное число раз. Микроконтроллер устанавливает коэффициенты деления и режим работы этой микросхемы, подавая команды по её последовательному интерфейсу (входы Clock, Data, LE). В зависимости от установленного режима на выход Fo/LD поступает результат работы одного из этих делителей. Резистор R19 и конденсатор C19 образуют фильтр питания микросхемы DD1, а диоды VD3 и VD4 защищают от перегрузки вход одного из её делителей частоты, непосредственно связанный с разъёмом XW3. На триггере DD4.1 собран одновибратор, формирующий из выходных сигналов делителей частоты импульсы длительностью 0,5 мкс. Его времязадающая цепь - резистор R17 и конденсатор C10.

Формирователь импульсов, подаваемых на разъём XW1, собран на транзисторе VT1 с коллекторной нагрузкой - резистором R8. Он работает, когда на выходе RC5 микроконтроллера установлен высокий логический уровень. В противном случае формирователь выключен и не оказывает влияния на подаваемые на разъём XW1 внешние сигналы. Поэтому разъём XW1 может быть как входным при измерении частоты и длительности логических сигналов, а также при счёте импульсов, так и выходным в режимах деления частоты. Резистор R11 служит для защиты входа 0 селектора-мультиплексора DD2 от случайно поданных на разъём XW1 сигналов большой амплитуды.

Селектор-мультиплексор по командам микроконтроллера подаёт на его предназначенные для измерения частоты и длительности импульсов входы либо импульсы уровней ТТЛ с разъёма XW1, либо сигналы, поступившие на разъём XW2 и преобразованные в такие импульсы компаратором DA1, либо сигналы, поступившие на разъём XW3 и прошедшие через делитель частоты микросхемы DD1. Микроконтроллер выполняет основные операции измерения частоты, длительности и счёта импульсов. Он же выводит результаты измерений на ЖКИ HG1 и управляет работой всего прибора. Программа микро-контроллера написана на языке ассемблера MASM, входящего в состав среды разработки программ MPLAB IDEv7.5.

В режимах измерения частоты микроконтроллер подсчитывает импульсы, поступившие на вход T0CKI в течение выбранного пользователем измерительного интервала (0,01, 0,1, 1 или 10 с). При измерении частоты сигнала, поданного на разъём XW3, его частоту предварительно делит на 1000 один из делителей микросхемы DD1.

При измерении длительности импульсов высокого логического уровня микроконтроллер по нарастающему перепаду измеряемого импульса на входе INT начинает счёт импульсов частотой 1 МГц, полученных делением своей тактовой частоты. Он прекращает этот счёт по спадающему перепаду измеряемого импульса. В случае измерения длительности импульса низкого уровня счёт начинается по его спадающему перепаду, а завершается по нарастающему.

Как только включён режим измерения ухода частоты, микроконтроллер выполняет первое измерение частоты входного сигнала, затем периодически повторяет эти измерения. Программа вычитает результат первого измерения из каждого последующего и выводит текущую разность на индикатор. После остановки этого режима на ЖКИ отображаются максимальные зафиксированные завремя измерения отклонения частоты вниз и вверх от начальной.

Для измерения частоты следования логических импульсов с уровнями ТТЛ кнопкой SB2 выбирают входной разъём XW1. Микроконтроллер формирует на выходах RC0-RC2 код 000, переводя этим селектор DD2 в состояние, при котором сигнал с разъёма XW1 поступает на входТОСК1 микроконтроллера для измерения частоты и на его же вход INT для измерения длительности импульсов. Результаты измерений программа выводит на ЖКИ HG1 (рис. 2), причём длительности импульсов высокого (H) и низкого (L) уровней на экране чередуются. Код в правой части верхней строки означает заданное время счёта: "10" - 10 с, "1" - 1 с, ",1" - 0,1 с и ",01" - 0,01 с. В правой части нижней строки выводится условное обозначение выбранного входного разъёма: TTL - XW1, VHF - XW2, UHF - XW3.

Рис. 2. Результаты измерений, выводимые программой на ЖКИ HG1

Измеряя частоту аналоговых сигналов (до 80 МГц), кнопкой SB2 выбирают входXW2. На выходах RC0-RC2 микроконтроллер формирует код 001, переводя мультиплексор DD2 в положение, в котором сигнал с разъёма XW2, преобразованный в прямоугольные импульсы компаратором DA1, поступает на вход TOCKI микроконтроллера. Программа измеряет частоту сигнала и выводит результат на ЖКИ (рис. 3).

Рис. 3. Результаты измерений, выводимые программой на ЖКИ HG1

Для измерения ВЧ-сигналов частотой до 1250 МГц кнопкой SB2 выбирают входной разъём XW3. С него сигнал поступает на вход f IN имеющегося в микросхеме DD1 делителя частоты. Коэффициент деления задан микроконтроллером равным 1000. Сигнал с выхода делителя частоты, преобразованный в импульсы длительностью около 0,5 мкс одновибратором на триггере DD4.1, поступает через мультиплексор DD2 на вход TOCKI микроконтроллера. Мультиплексор установлен в нужное для этого состояние кодом 010 на выходах RC0-RC2 микроконтроллера. Программа микроконтроллера измеряет частоту и с учётом коэффициента деления выводит результат на ЖКИ (рис. 4).

Рис. 4. Результаты измерений, выводимые программой на ЖКИ HG1

Подлежащие счёту импульсы подают на входной разъём XW1 или XW2. Кнопкой SB2 выбирают один из этих входов, а кнопкой SB1 - режим COUNTER (рис. 5). Счёт запускают нажатием на кнопку SB3, что сопровождается заменой на экране метки OFF (выключено) меткой ON (включено). Для остановки счёта на кнопку SB3 нажимают повторно, при этом метку ON сменяет метка OFF. Накопленное за время от запуска до остановки число импульсов программа показывает на ЖКИ.

Рис. 5. Результаты измерений, выводимые программой на ЖКИ HG1

Чтобы измерить уход частоты, сигнал (в зависимости от его формы и частоты) подают на один из входных разъёмов XW1-XW3, выбирают кнопкой SB2 этот разъём, а кнопкой SB1 - функцию "+/-FREQUENCV (её название сопровождается меткой OFF). Измерение запускают нажатием на кнопку SB3, при этом метку OFF сменяет метка ON. Прибор измеряет уход частоты и выводит его текущее значение на ЖКИ (рис. 6). После повторного нажатия на кнопку SB3, останавливающего измерение, на ЖКИ появляются максимальные зафиксированные за время измерения значения ухода частоты вверх и вниз от исходной (рис. 7).

Рис. 6. Результаты измерений, выводимые программой на ЖКИ HG1

Рис. 7. Результаты измерений, выводимые программой на ЖКИ HG1

Для деления частоты аналогового сигнала частотой до 80 МГц кнопкой SB2 выбирают входной разъём XW2 и подают на него сигнал, частота которого подлежит делению. С выхода компаратора DA1 он поступает на вход OSCIN делителя частоты R_Counter микросхемы DD1. Микроконтроллер задаёт по последовательному интерфейсу необходимый коэффициент деления этого делителя и подключает его выход к выходу Fo/LD микросхемы. Нажатиями на кнопку SB1 коэффициент деления уменьшают, а на кнопку SB2 - увеличивают. Чем дольше удерживают кнопку нажатой, тем быстрее изменяется коэффициент.

На выходе RC5 микроконтроллер устанавливает высокий уровень, переключая разъём XW1 в режим выхода. На своих выходах RC0-RC2 микроконтроллер формирует код 000, поэтому сигнал, выведенный на разъём, поступает и на входТ0СКI микроконтроллера для измерения частоты. Длительность импульсов в этом режиме не измеряется.

Рис. 8. Результаты измерений, выводимые программой на ЖКИ HG1

На рис. 8 показан результат деления частоты 19,706 МГц поданного на разъём XW2 сигнала на 100. В этом случае на выходе XW1 с частотой 197,06 кГц следуют импульсы высокого логического уровня длительностью 0,5 мкс. Сигналы частотой от 50 до 1200 МГц подают для деления на разъём XW3. Они обрабатываются аналогично, отличие лишь в том, что в операции участвует более высокочастотный делитель частоты N-Counter микросхемы DD1. На рис. 9 показан результат деления частоты 200,26 МГц на 2000. Частота на выходе - 100,13 кГц.

Рис. 9. Результаты измерений, выводимые программой на ЖКИ HG1

Частотомер смонтирован на печатной плате из фольгированного с двух сторон стеклотекстолита толщиной 1 мм. Её чертёж показан на рис. 10, а размещение элементов - на рис. 11. Постоянные резисторы и большинство конденсаторов имеют типоразмер 0805 для поверхностного монтажа. Подстроечные резисторы R21 и R23 - SH-655MCL, подстроечный конденсатор C13 - TZC3P300A110R00. Оксидные конденсаторы С4 и C6 - алюминиевые с проволочными выводами.

Рис. 10. Печатная плата частотомера

Рис. 11. Размещение элементов на плате

Разъёмы XW1-XW3 - 24_BNC-50-2-20/133_N . Они соединены с платой отрезками коаксиального кабеля с волновым сопротивлением 50 Ом длиной около 100 мм. Кнопки SB1-SB3 - TS-A3PG-130. Индикатор HG1 укреплён над платой на стойках высотой 10 мм винтами М3.

Прибор собран в пластмассовом корпусе Z-28 . На его передней панели вырезано прямоугольное отверстие размерами 70x25 мм для экрана ЖКИ и просверлены три отверстия диаметром 3 мм под кнопки. Сами кнопки установлены на стеклотекстолитовой плате размерами 100x12x1,5 мм, прикреплённой к передней панели с обратной стороны винтами M3. С левой стороны корпуса установлено гнездо питания, а с правой - его выключатель. Входные байонетные разъёмы размещены на задней стенке корпуса.

Налаживание частотомера заключается в следующем:

Установите подстроечным резистором R21 оптимальную контрастность изображения на экране ЖКИ;

Установите подстроечным резистором R23 необходимую яркость подсветки ЖКИ;

Установите подстроечным конденсатором C13 тактовую частоту микроконтроллера в точности равной 4 МГц. Для этого к разъёму XW1 подключите цифровой частотомер (Ч3-63 или любой другой), включите налаживаемый прибор при нажатой кнопке SB3 (при этом на ЖКИ должна появиться надпись "TEST") и, вращая ротор подстроечного конденсатора C13, добейтесь показаний внешнего частотомера, максимально близких к 100000 Гц. Не забывайте, что погрешность установки этой частоты непосредственным образом влияет на погрешность налаживаемого прибора.

Литература

1. Ultrafast, 4 ns Single-Supply Comparators AD8611/AD8612. - URL: http://www.analog. com/media/en/technical-documentation/ data-sheets/AD8611_8612.pdf (02.11.2015).

2. PLLatinum™ LowPower Frequency Synthesizer for RF Personal Communications LMX2306 550 MHz, LMX2316 1.2 GHz, LMX2326 2.8 GHz. - URL: http://www.ti.com/lit/ds/ symlink/lmx2326.pdf (02.11.2015).

3. 74HC74, 74HCT74 Dual D-type flip-flop with set and reset; positive edge-trigger. - URL: http://www.nxp.com/documents/data_sheet/ 74HC_HCT74.pdf (02.11.2015).

4. 74HC151, 74HCT151 8-input multiplexer. - URL: http://www.nxp.com/documents/data_ sheet/74HC_HCT151.pdf (02.11.2015).

5. PIC16F87XA Data Sheet 28/40/44-Pin Enhanced Flash Microcontrollers. - URL: http://akizukidenshi.com/download/PIC16F 87XA.pdf (02.11.2015).

6. WH1602B character 16x2. - URL: http:// www.winstar.com.tw/download.php?ProID= 22 (17.11.15).

7. Coaxial Cable Connector: 24_BNC-50-2-20/133_N. - URL: http://www.electroncom. ru/pdf/hs/bnc/24bnc50-2-20_133n.pdf (16.11.15).

8. Корпус Z-28. - URL: http://files.rct.ru/ pdf/kradex/z-28.pdf (16.11.15).

Чертёж печатной платы в формате Sprint Layout 5.0 и программу микроконтроллера можно скачать .


Дата публикации: 16.02.2016

Мнения читателей
  • Владимир / 20.01.2017 - 10:55
    Вышли еще две версии частотомера. Третья версия опубликована в журнале "Радиолюбитель" №8,9. Четвертая: https://cloud.mail.ru/public/4EKo/QaTMuiDMv

Построенный . Он позволяет измерять частоты до 10 МГц в четырех автоматически переключаемых диапазонах. Наименьший диапазон имеет разрешение 1 Гц.

Технические характеристики частотомера

  • Диапазон 1: 9,999 кГц, разрешение 1 Гц.
  • Диапазон 2: 99,99 кГц, разрешение до 10 Гц.
  • Диапазон 3: 999.9 кГц, разрешение до 100 Гц.
  • Диапазон 4: 9999 кГц, разрешение до 1 кГц.

Описание частотомера на микроконтроллере

Микроконтроллер Attiny2313 работает от внешнего кварцевого генератора с тактовой частотой 20 МГц (это максимально допустимая частота). Точность измерения частотомера определяется точностью данного кварца. Минимальная длина полупериода измеряемого сигнала должна быть больше, чем период кварцевого генератора (это связано с ограничениями архитектуры микроконтроллера ATtiny2313). Следовательно, 50 процентов от тактовой частоты генератора составляет 10 МГц (это максимальное значение измеряемой частоты).

Установка фьюзов (в PonyProg):