С какой частотой колеблется груз на пружине. Период колебаний: опыты, формулы, задачи. Определение и физический смысл

26.11.2020 Прочистка

Определение

Пружинным маятником называют систему, которая состоит из упругой пружины, к которой прикреплен груз.

Допустим, что масса груза равна $m$, коэффициент упругости пружины $k$. Масса пружины в таком маятнике обычно не учитывается. Если рассматривать вертикальные движения груза (рис.1), то он движется под действием силы тяжести и силы упругости, если систему вывели из состояния равновесия и предоставили самой себе.

Уравнения колебаний пружинного маятника

Пружинный маятник, совершающий свободные колебания является примером гармонического осциллятора. Допустим, что маятник совершает колебания вдоль оси X. Если колебания малые, выполняется закон Гука, то уравнение движения груза имеет вид:

\[\ddot{x}+{\omega }^2_0x=0\left(1\right),\]

где ${щu}^2_0=\frac{k}{m}$ - циклическая частота колебаний пружинного маятника. Решением уравнения (1) является функция:

где ${\omega }_0=\sqrt{\frac{k}{m}}>0$- циклическая частота колебаний маятника, $A$ - амплитуда колебаний; ${(\omega }_0t+\varphi)$ - фаза колебаний; $\varphi $ и ${\varphi }_1$ - начальные фазы колебаний.

В экспоненциальном виде колебания пружинного маятника можно записать как:

Формулы периода и частоты колебаний пружинного маятника

Если в упругих колебаниях выполняется закон Гука, то период колебаний пружинного маятника вычисляют при помощи формулы:

Так как частота колебаний ($\nu $) - величина обратная к периоду, то:

\[\nu =\frac{1}{T}=\frac{1}{2\pi }\sqrt{\frac{k}{m}}\left(5\right).\]

Формулы амплитуды и начальной фазы пружинного маятника

Зная уравнение колебаний пружинного маятника (1 или 2) и начальные условия можно полностью описать гармонические колебания пружинного маятника. Начальные условия определяют амплитуда ($A$) и начальная фаза колебаний ($\varphi $).

Амплитуду можно найти как:

начальная фаза при этом:

где $v_0$ - скорость груза при $t=0\ c$, когда координата груза равна $x_0$.

Энергия колебаний пружинного маятника

При одномерном движении пружинного маятника между двумя точками его движения существует только один путь, следовательно, выполняется условие потенциальности силы (любую силу можно считать потенциальной, если она зависит только от координат). Так как силы, действующие на пружинный маятник потенциальны, то можно говорить о потенциальной энергии.

Пусть пружинный маятник совершает колебания в горизонтальной плоскости (рис.2). За ноль потенциальной энергии маятника примем положение его равновесия, где поместим начало координат. Силы трения не учитываем. Используя формулу, связывающую потенциальную силу и потенциальную энергию для одномерного случая:

учитывая, что для пружинного маятника $F=-kx$,

тогда потенциальная энергия ($E_p$) пружинного маятника равна:

Закон сохранения энергии для пружинного маятника запишем как:

\[\frac{m{\dot{x}}^2}{2}+\frac{m{{\omega }_0}^2x^2}{2}=const\ \left(10\right),\]

где $\dot{x}=v$ - скорость движения груза; $E_k=\frac{m{\dot{x}}^2}{2}$ - кинетическая энергия маятника.

Из формулы (10) можно сделать следующие выводы:

  • Максимальная кинетическая энергия маятника равна его максимальной потенциальной энергии.
  • Средняя кинетическая энергия по времени осциллятора равна его средней по времени потенциальной энергии.

Примеры задач с решением

Пример 1

Задание. Маленький шарик, массой $m=0,36$ кг прикреплен к горизонтальной пружине, коэффициент упругости которой равен $k=1600\ \frac{Н}{м}$. Каково было начальное смещение шарика от положения равновесия ($x_0$), если он при колебаниях проходит его со скоростью $v=1\ \frac{м}{с}$?

Решение. Сделаем рисунок.

По закону сохранения механической энергии (так как считаем, что сил трения нет), запишем:

где $E_{pmax}$ - потенциальная энергия шарика при его максимальном смещении от положения равновесия; $E_{kmax\ }$ - кинетическая энергия шарика, в момент прохождения положения равновесия.

Потенциальная энергия равна:

В соответствии с (1.1) приравняем правые части (1.2) и (1.3), имеем:

\[\frac{mv^2}{2}=\frac{k{x_0}^2}{2}\left(1.4\right).\]

Из (1.4) выразим искомую величину:

Вычислим начальное (максимальное) смещение груза от положения равновесия:

Ответ. $x_0=1,5$ мм

Пример 2

Задание. Пружинный маятник совершает колебания по закону: $x=A{\cos \left(\omega t\right),\ \ }\ $где $A$ и $\omega $ - постоянные величины. Когда возвращающая сила в первый раз достигает величины $F_0,$ потенциальная энергия груза равна $E_{p0}$. В какой момент времени это произойдет?

Решение. Возвращающей силой для пружинного маятника является сила упругости, равная:

Потенциальную энергию колебаний груза найдем как:

В момент времени, который следует найти $F=F_0$; $E_p=E_{p0}$, значит:

\[\frac{E_{p0}}{F_0}=-\frac{A}{2}{\cos \left(\omega t\right)\ }\to t=\frac{1}{\omega }\ arc{\cos \left(-\frac{2E_{p0}}{AF_0}\right)\ }.\]

Ответ. $t=\frac{1}{\omega }\ arc{\cos \left(-\frac{2E_{p0}}{AF_0}\right)\ }$

Федеральное агентство железнодорожного транспорта

Уральский государственный университет путей сообщения

Филиал УрГУПС в г. Нижний Тагил

Кафедра «Общепрофессиональные дисциплины»

Отчет по лабораторной работе №5

«Масса на пружине»

Преподаватель:

Нижний Тагил

  1. Колебания груза на пружине

Колебания массы на пружине при отсутствии вынуждающей силы называются свободными. Свободные колебания при отсутствии трения являются гармоническими.

Колебательное движение груза на пружине происходит под действием упругой силы по вертикальному направлению.

По второму закону Ньютона

где – масса колеблющегося тела,– коэффициент упругости (жёсткость) пружины. Пружинный маятник совершает гармонические колебания по законус циклической частотойи периодом. Формула справедлива для упругих колебаний в пределах, в которых выполняется закон Гука, т.е. масса пружины мала по сравнению с массой тела. Потенциальная энергия пружинного маятника равна.

Гармоническими колебаниями называются такие колебания, в которых колеблющаяся величина изменяется по закону синуса или косинуса . Уравнение гармонического колебания

где –коэффициент упругости (жёсткость) , –масса колеблющейся системы, –смещение колеблющейся системы, – сила упругости (возвращающая сила) . Решение дифференциального уравнения имеет вид

где – колеблющаяся величина (смещение, скорость, ускорение, сила, импульс и др.), –время , –амплитуда колебания, равная максимальному отклонению колеблющейся величины от положения равновесия, –циклическая (круговая) частота . Циклическая частота численно равна числу полных колебаний, совершаемых за времяс, т.е.,–частота колебаний равна числу полных колебаний, совершаемых за единицу времени.Период колебаний – время, за которое совершается одно полное колебание.Фаза колебания определяет значениев данный момент времени, или какую часть от амплитудысоставляет смещениев данный момент времени.Начальная фаза колебания определяет момент начала отсчёта времени, т.е. при.

Характеристики гармонического свободного колебания материальной точки (массы на пружине), совершаемого по закону , при

Здесь индексом 0 обозначены (,,,,,,) – максимальные (амплитудные) значения величин.

Скорость м.т. , где.

Ускорение м.т. ;.

Возвращающая сила, действующая на м. т. ;.

Импульс м.т. ;.

Кинетическая энергия м.т. ;.

Среднее значение кинетической энергии м.т. за один период .

Потенциальная энергия м.т. ;.

Среднее значение потенциальной энергии м.т. .

Колебание м.т. совершается по закону , при,.

Скорость м.т. , где.

Ускорение м.т. ;.

Возвращающая сила, действующая на м.т. ;.

Импульс м.т. ;.

Кинетическая энергия м.т. ;.

Потенциальная энергия м.т. ;. По закону сохранения механической энергии максимальные значения, средние значения за период. Полная энергия колеблющейся м. т. равна. Так как,.

Согласно выражениям (2) квадрат у синуса и косинуса в кинетической и потенциальной энергии показывает, что эти величины со временем изменяются с удвоенной частотой .

Ускорение, скорость, смещение м. т. находятся в последовательности . Ускорение опережает скорость по фазе на, а смещение – на. Скорость опережает смещение по фазе на. Вторая производная от смещения по времени пропорциональна смещению и имеет обратный ему знак. Сила, действующая на колеблющуюся м. т.,. Она пропорциональна смещению м. т. из положения равновесия и направлена к положению равновесия.

Затухающими колебаниями называются колебания, энергия которых уменьшается с течением времени. Энергия расходуется на работу против сил трения. Затухающие колебания совершаются при одновременном действии сил: упругой силы и силы сопротивления среды. Уравнение затухающего колебания при небольших затуханиях вытекает из второго закона Ньютона , т.е.

Или , или, (3)

где – масса колеблющегося тела,=- его ускорение,F упр = - - упругая (возвращающая) сила,–сила сопротивления среды, –коэффициент сопротивления среды, =– скорость движения тела в среде. Решение дифференциального уравнения (3) даёт зависимость смещенияот времени

где –коэффициент затухания , – циклическая частота затухающих колебаний системы,– собственная циклическая частота свободных колебаний системы. Отношение двух последующих амплитуд одного и того же знакаи, отстоящих друг от друга на период, называетсядекрементом затухания . Натуральный логарифм от отношения двух последующих амплитуд, отстоящих друг от друга на период, называетсялогарифмическим декрементом затухания .Время релаксации равно промежутку времени , в течение которого амплитуда затухающих колебаний уменьшается враз. Логарифмический декремент затухания, где=/T – число колебаний, совершаемых за время релаксации, т.е. за время уменьшения амплитуды в раз.Добротностью колебательной системы называется число, равное умноженному на 2π отношению полной энергии к величине потери энергии за период за счёт её диссипации. Добротностьпропорциональна числу колебаний, совершаемых системой за время релаксации.

Определение 1

Свободные колебания могут совершаться под действием внутренних сил только после выведения из положения равновесия всей системы.

Чтобы колебания совершались согласно гармоническому закону, нужно, чтобы сила, возвращающая тело в положение равновесия, была пропорциональна смещению тела из равновесного положения и направлена в сторону, противоположную смещению.

F (t) = m a (t) = - m ω 2 x (t) .

Соотношение говорит о том, что ω является частотой гармонического колебания. Данное свойство характерно для упругой силы в пределах применимости закона Гука:

F у п р = - k x .

Определение 2

Силы любой природы, которые удовлетворяют условию, называют квазиупругими .

То есть груз с массой m , прикрепляющийся к пружине жесткости k с неподвижным концом, изображенным на рисунке 2 . 2 . 1 , составляют систему, способную совершать гармонические свободные колебания при отсутствии силы трения.

Определение 3

Груз, располагаемый на пружине, называют линейным гармоническим осциллятором.

Рисунок 2 . 2 . 1 . Колебания груза на пружине. Трения нет.

Круговая частота

Нахождение круговой частоты ω 0 производится с помощью применения формулы второго закона Ньютона:

m a = - k x = m ω 0 2 x .

Значит, получаем:

Определение 4

Частоту ω 0 называют собственной частотой колебательной системы .

Определение периода гармонических колебаний груза на пружине Т находится из формулы:

T = 2 π ω 0 = 2 π m k .

Горизонтальное расположение системы пружина-груз, сила тяжести компенсируется силой реакции опоры. При подвешивании груза на пружину направление силы тяжести идет по линии движения груза. Положение равновесия растянутой пружины равняется:

x 0 = m g k , тогда как колебания выполняются около нового равновесного состояния. Формулы собственной частоты ω 0 и периода колебаний Т в вышеуказанных выражениях являются справедливыми.

Определение 5

При имеющейся математической связи между ускорением тела а и координатой х поведение колебательной системы характеризуется строгим описанием: ускорение является второй производной координаты тела х по времени t:

Описание второго закона Ньютона с грузом на пружине запишется как:

m a - m x = - k x , или x ¨ + ω 0 2 x = 0 , где свободная частота ω 0 2 = k m .

Если физические системы зависят от формулы x ¨ + ω 0 2 x = 0 , тогда они в состоянии совершать свободные колебательные гармонические движения с различной амплитудой. Это возможно, так как применяется x = x m cos (ω t + φ 0) .

Определение 6

Уравнение вида x ¨ + ω 0 2 x = 0 получило название уравнения свободных колебаний . Их физические свойства могут определять только собственную частоту колебаний ω 0 или период Т.

Амплитуда x m и начальная фаза φ 0 находят при помощи способа, который вывел их из состояния равновесия начального момента времени.

Пример 1

При наличии смещенного груза из положения равновесия на расстояние ∆ l и моменте времени, равном t = 0 , производится его опускание без начальной скорости. Тогда x m = ∆ l , φ 0 = 0 . Если груз находился в положении равновесия, то при толчке передается начальная скорость ± υ 0 , отсюда x m = m k υ 0 , φ 0 = ± π 2 .

Амплитуда x m с начальной фазой φ 0 определяются наличием начальных условий.

Рисунок 2 . 2 . 2 . Модель свободных колебаний груза на пружине.

Механические колебательные системы отличаются наличием сил упругих деформаций в каждой из них. Рисунок 2 . 2 . 2 показывает угловой аналог гармонического осциллятора, совершающий крутильные колебания. Диск располагается горизонтально и висит на упругой нити, закрепленной в его центре масс. Если его повернуть на угол θ , тогда возникает момент силы упругой деформации кручения M у п р:

M у п р = - x θ .

Данное выражение не соответствует закону Гука для деформации кручения. Величина x аналогична k жесткости пружины. Запись второго закона Ньютона для вращательного движения диска принимает вид

I ε = M у п р = - x θ или I θ ¨ = - x θ , где моментом инерции обозначается I = I C , а ε – угловое ускорение.

Аналогично с формулой пружинного маятника:

ω 0 = x I , T = 2 π I x .

Применение крутильного маятника замечено в механических часах. Он получил название балансира, в котором создание момента упругих сил производится при помощи спиралевидной пружины.

Рисунок 2 . 2 . 3 . Крутильный маятник.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Свойства пружинного маятника

Определение 1

Идеальный пружинный маятник представляет собой пружину, массой которой можно пренебречь, с закрепленным на ней телом с точечной массой. При этом один или оба конца пружины закреплены, а силой трения можно пренебречь.

Такую конструкцию можно рассматривать лишь как математическую модель. Примерами реальных пружинных маятников (навитых из упругой проволоки цилиндрических спиралей) могут служить всевозможные устройства, гасящие колебания: амортизаторы, подвески, рессоры и т.п. Пружинные маятники, хотя и несколько иной конструкции (в виде плоских спиралей) используются в механических часах.

Свойства пружин зависят от вещества, из которого они изготовлены (как правило, это особая пружинная сталь), диаметра проволоки, формы ее сечения, диаметра цилиндра пружины, его длины. Эти показатели в совокупности обуславливают ключевую характеристику пружины - ее жесткость.

Пружина запасает энергию при продольном растяжении или сжатии за счет упругих деформаций в кристаллической решетке своего вещества.

Замечание 1

При слишком сильном растяжении или сжатии материал пружины теряет упругие свойства. Такая деформация называется пластической или остаточной.

Формула для расчета частоты колебаний

Если пружину с закрепленной на ней грузом, подвергнуть продольной упругой деформации, а затем отпустить, она начнет совершать возвратно-поступательные гармонические колебания, в ходе которых перемещение закрепленного на ней груза описывается формулой:

$x = A \cdot \cos(\omega_0 \cdot t + \phi)$

Здесь $A$ - амплитуда колебаний, $\phi$ - начальная фаза, $\omega_0$ - собственная циклическая частота колебаний пружинного маятника, рассчитываемая как

$\omega_0 = \sqrt{\frac{k}{m}}$ > $0$,

  • $k$ - жесткость пружины,
  • $m$ - масса закрепленного на ней тела.

Циклическая частота отличается тем, что характеризует не количество полных циклов за единицу времени, а количество "пройденных" колеблющейся по гармоническому закону точкой радиан.

Период колебаний пружинного маятника вычисляется как