Что значит ядро процессора. Что лучше многоядерность или более высокая частота? Что такое ядро процессора

В первые годы нового тысячелетия, когда частоты CPU, наконец, прошли отметку 1 ГГц, некоторые компании (не будем показывать пальцем на Intel) предсказывали, что новая архитектура NetBurst сможет в будущем достичь частот порядка 10 ГГц. Энтузиасты ожидали наступление новой эры, когда тактовые частоты CPU будут расти подобно грибам после дождя. Нужно больше производительности? Просто перейдите на процессор с большей тактовой частотой.

Яблоко Ньютона громко упало на головы мечтателей, которые рассматривали мегагерцы как самый лёгкий способ продолжения роста производительности ПК. Физические ограничения не позволили экспоненциально увеличивать тактовую частоту без соответствующего роста тепловыделения, да и другие проблемы, связанные с технологиями производства, тоже стали возникать. Действительно, последние годы самые быстрые процессоры работают на частотах от 3 до 4 ГГц.

Конечно, прогресс не остановить, когда за него готовы платить деньги - есть довольно много пользователей, кто готов выложить немалую сумму за более мощный компьютер. Поэтому инженеры стали искать другие способы увеличения производительности, в частности, повышая эффективность выполнения команд, а не только надеясь на тактовую частоту. Параллелизм тоже оказался решением - если вы не можете сделать CPU быстрее, то почему не добавить второй такой же процессор, чтобы увеличить вычислительные ресурсы?

Pentium EE 840 - первый двуядерный CPU, появившийся в рознице.

Основная проблема с параллелизмом заключается в том, что программное обеспечение должно быть специально написано так, чтобы распределять нагрузку по нескольким потокам - то есть вы не получите немедленной отдачи от вложенных денег, в отличие от таковой частоты. В 2005 году, когда вышли первые двуядерные процессоры, они не обеспечивали серьёзного прироста производительности, поскольку на настольных ПК использовалось довольно мало программного обеспечения, которое бы их поддерживало. Фактически, большая часть двуядерных CPU была медленнее одноядерных процессоров в большинстве задач, поскольку одноядерные CPU работали на более высоких тактовых частотах.

Впрочем, прошло уже четыре года, и за них многое изменилось. Многие разработчики программного обеспечения оптимизировали свои продукты, чтобы получить преимущество от нескольких ядер. Одноядерные процессоры сегодня уже сложнее найти в продаже, и двух-, трёх- и четырёхъядерные CPU считаются вполне обыденными.

Но возникает вопрос: сколько ядер CPU нужно на самом деле? Достаточно ли для игр трёхъядерного процессора, или лучше доплатить и взять четырёхъядерный чип? Достаточно ли для обычного пользователя двуядерного процессора, или большее число ядер действительно даёт какую-либо разницу? Какие приложения оптимизированы под несколько ядер, а какие будут реагировать на изменение только таких спецификаций, как частота или размер кэша?

Мы посчитали, что настало хорошее время провести тесты приложений из обновлённого пакета (впрочем, обновление ещё не закончено) на одно-, двух-, трёх- и четырёхъядерных конфигурациях, чтобы понять, насколько ценными стали многоядерные процессоры в 2009 году.

Чтобы тесты были справедливыми, мы выбрали четырёхъядерный процессор - разогнанный до 2,7 ГГц Intel Core 2 Quad Q6600. После проведения тестов на нашей системе, мы затем отключили одно из ядер, перезагрузились, и повторили тесты. Мы последовательно отключали ядра и получили результаты для разного количества активных ядер (от одного до четырёх), при этом процессор и его частота не менялись.

Отключение ядер CPU под Windows выполнить очень легко. Если вы хотите узнать, как это сделать, то наберите "msconfig" в окне Windows Vista "Начать поиск/Start Search" и нажмите "Enter". Это откроет утилиту "Конфигурация системы".

В ней перейдите на закладку "Загрузка/Boot" и нажмите клавишу "Дополнительные параметры/Advanced options".

Это приведёт к появлению окна "Дополнительные параметры загрузки/BOOT Advanced Options". Выберите галочку "Число процессоров/Number of Processors" и укажите нужно число ядер процессора, которые будут активны в системе. Всё очень просто.

После подтверждения программа предложит перезагрузиться. После перезагрузки в "Диспетчере задач Windows" (Task Manager) можно увидеть число активных ядер. Вызов "Диспетчера задач" выполняется нажатием клавиш Crtl+Shift+Esc.

Выберите в "Диспетчере задач" вкладку "Быстродействие/Performance". В ней вы сможете увидеть графики нагрузки для каждого процессора/ядра (будь это отдельный процессор/ядро или виртуальный процессор, как мы получаем в случае Core i7 с активной поддержкой Hyper-Threading) в пункте "Хронология загрузки ЦП/CPU Usage History". Два графика означают два активных ядра, три - три активных ядра и т.д.

Теперь, когда вы ознакомились с методикой наших тестов, позвольте перейти к детальному рассмотрению конфигурации тестового компьютера и программ.

Тестовая конфигурация

Системное аппаратное обеспечение
Процессор Intel Core 2 Quad Q6600 (Kentsfield), 2,7 ГГц, FSB-1200, 8 Мбайт кэша L2
Платформа MSI P7N SLI Platinum, Nvidia nForce 750i, BIOS A2
Память A-Data EXTREME DDR2 800+, 2 x 2048 Мбайт, DDR2-800, CL 5-5-5-18 на 1,8 В
Жёсткий диск Western Digital Caviar WD50 00AAJS-00YFA, 500 Гбайт, 7200 об/мин, кэш 8 Мбайт, SATA 3,0 Гбит/с
Сеть Встроенный контроллер nForce 750i Gigabit Ethernet
Видеокарты Gigabyte GV-N250ZL-1GI 1 GB DDR3 PCIe
Блок питания Ultra HE1000X, ATX 2.2, 1000 Вт
Программное обеспечение и драйверы
Операционная система Microsoft Windows Vista Ultimate 64-bit 6.0.6001, SP1
Версия DirectX DirectX 10
Драйвер платформы nForce Driver Version 15.25
Графический драйвер Nvidia Forceware 182.50

Тесты и настройки

3D-игры
Crysis Quality settings set to lowest, Object Detail to High, Physics to Very High, version 1.2.1, 1024x768, Benchmark tool, 3-run average
Left 4 Dead Quality settings set to lowest, 1024x768, version 1.0.1.1, timed demo.
World in Conflict Quality settings set to lowest, 1024x768, Patch 1.009, Built-in benchmark.
iTunes Version: 8.1.0.52, Audio CD ("Terminator II" SE), 53 min., Default format AAC
Lame MP3 Version: 3.98 (64-bit), Audio CD ""Terminator II" SE, 53 min, wave to MP3, 160 Kb/s
TMPEG 4.6 Version: 4.6.3.268, Import File: "Terminator II" SE DVD (5 Minutes), Resolution: 720x576 (PAL) 16:9
DivX 6.8.5 Encoding mode: Insane Quality, Enhanced Multi-Threading, Enabled using SSE4, Quarter-pixel search
XviD 1.2.1 Display encoding status=off
MainConcept Reference 1.6.1 MPEG2 to MPEG2 (H.264), MainConcept H.264/AVC Codec, 28 sec HDTV 1920x1080 (MPEG2), Audio: MPEG2 (44.1 KHz, 2 Channel, 16-Bit, 224 Kb/s), Mode: PAL (25 FPS), Profile: Tom"s Hardware Settings for Qct-Core
Autodesk 3D Studio Max 2009 (64-bit) Version: 2009, Rendering Dragon Image at 1920x1080 (HDTV)
Adobe Photoshop CS3 Version: 10.0x20070321, Filtering from a 69 MB TIF-Photo, Benchmark: Tomshardware-Benchmark V1.0.0.4, Filters: Crosshatch, Glass, Sumi-e, Accented Edges, Angled Strokes, Sprayed Strokes
Grisoft AVG Antivirus 8 Version: 8.0.134, Virus base: 270.4.5/1533, Benchmark: Scan 334 MB Folder of ZIP/RAR compressed files
WinRAR 3.80 Version 3.80, Benchmark: THG-Workload (334 MB)
WinZip 12 Version 12, Compression=Best, Benchmark: THG-Workload (334 MB)
3DMark Vantage Version: 1.02, GPU and CPU scores
PCMark Vantage Version: 1.00, System, Memory, Hard Disk Drive benchmarks, Windows Media Player 10.00.00.3646
SiSoftware Sandra 2009 SP3 CPU Test=CPU Arithmetic/MultiMedia, Memory Test=Bandwidth Benchmark

Результаты тестов

Начнём с результатов синтетических тестов, чтобы потом оценить, насколько хорошо они соответствуют реальным тестам. Важно помнить, что синтетические тесты пишутся в расчёте на будущее, поэтому они должны сильнее реагировать на изменение в количестве ядер, чем реальные приложения.

Мы начнём с синтетического теста игровой производительности 3DMark Vantage. Мы выбрали прогон "Entry", который 3DMark выполняет на самом низком доступном разрешении, чтобы производительность CPU сильнее влияла на результат.

Почти линейный рост довольно интересен. Самый большой прирост наблюдается при переходе от одного ядра к двум, но и затем масштабируемость прослеживается довольно ощутимо. А теперь давайте перейдём к тесту PCMark Vantage, который призван отображать общую системную производительность.

Результаты PCMark заставляют предположить, что конечный пользователь выиграет от увеличения количества ядер CPU вплоть до трёх, а четвёртое ядро, наоборот, немного снизит производительность. Давайте посмотрим, с чем связан подобный результат.

В тесте подсистемы памяти мы вновь наблюдаем самый большой прирост производительности при переходе от одного ядра CPU к двум.

Тест продуктивности, как нам кажется, сильнее всего влияет на общий результат теста PCMark, поскольку в данном случае рост производительности заканчивается на трёх ядрах. Давайте посмотрим, будут ли аналогичны результаты другого синтетического теста SiSoft Sandra.

Мы начнём с арифметических и мультимедийных тестов SiSoft Sandra.


Синтетические тесты демонстрируют довольно линейный прирост производительности при переходе от одного ядра CPU к четырём. Данный тест написан специально, чтобы эффективно использовать четыре ядра, но мы сомневаемся, что в реальных приложениях будет такой же линейный прогресс.

Тест памяти Sandra тоже предполагает, что три ядра дадут больше пропускной способности памяти в целочисленных буферизованных операциях iSSE2.

После синтетических тестов настало время посмотреть, что мы получим в тестах приложений.

Кодирование аудио традиционно являлось сегментом, приложения в котором не очень сильно выигрывали от нескольких ядер, либо они не были оптимизированы разработчиками. Ниже приведены результаты Lame и iTunes.

Lame не демонстрирует особого преимущества при использовании нескольких ядер. Что интересно, мы наблюдаем небольшой прирост производительности с чётным количеством ядер, что довольно странно. Однако разница невелика, поэтому она просто может находиться в пределах погрешности.

Что касается iTunes, то мы видим небольшой прирост производительности после активации двух ядер, но большее число ядер ничего не дают.

Получается, ни Lame, ни iTunes не оптимизированы под несколько ядер CPU для кодирования аудио. С другой стороны, насколько мы знаем, программы кодирования видео часто очень сильно оптимизируют под несколько ядер из-за их изначально параллельной природы. Давайте посмотрим на результаты кодирования видео.

Мы начнём тесты кодирования видео с MainConcept Reference.

Обратите внимание, насколько сильно на результат влияет увеличение числа ядер: время кодирования уменьшается с девяти минут на одноядерном 2,7-ГГц процессоре Core 2 до всего двух минут и 30 секунд, когда активны все четыре ядра. Вполне понятно, что если вы часто перекодируете видео, то лучше брать процессор с четырьмя ядрами.

Получим ли мы схожие преимущества в тестах TMPGEnc?

Здесь можно видеть влияние на результат кодера. Если кодер DivX высоко оптимизирован под несколько ядер CPU, то Xvid не демонстрирует такого заметного преимущества. Впрочем, даже Xvid даёт снижение времени кодирования на 25% при переходе от одного ядра к двум.

Начнём графические тесты с Adobe Photoshop.

Как видим, версия CS3 не замечает добавление ядер. Странный результат для столь популярной программы, хотя мы признаём, что не использовали последнюю версию Photoshop CS4. Результаты CS3 всё равно не вдохновляют.

Давайте посмотрим на результаты 3D-рендеринга в Autodesk 3ds Max.

Вполне очевидно, что Autodesk 3ds Max "любит" дополнительные ядра. Данная особенность присутствовала в 3ds Max ещё во время работы этой программы в DOS-окружении, поскольку задача 3D-рендеринга выполнялась столь долго, что было необходимо распределять её по нескольким компьютерам в сети. Опять же, для подобных программ весьма желательно использовать четырёхъядерные процессоры.

Тест антивирусного сканирования очень близок к реальным жизненным условиям, поскольку почти все используют антивирусы.

Антивирус AVG демонстрирует чудесный прирост производительности при увеличении ядер CPU. Во время антивирусного сканирования производительность компьютера может очень сильно падать, и результаты наглядно показывают, что несколько ядер существенно сокращают время сканирования.


WinZip и WinRAR не дают заметного прироста на нескольких ядрах. WinRAR демонстрирует прирост производительности на двух ядрах, но не более того. Интересно будет посмотреть, как себя покажет только что вышедшая версия 3.90.

В 2005 году, когда стали появляться настольные компьютеры с двумя ядрами, просто не существовало игр, которые демонстрировали бы прирост производительности при переходе от одноядерных CPU на многоядерные процессоры. Но времена изменились. Как сказываются несколько ядер CPU на современных играх? Давайте запустим несколько популярных игр и посмотрим. Мы проводили игровые тесты в низком разрешении 1024x768 и с низким уровнем графических деталей, чтобы минимизировать влияние видеокарты и определить, насколько сильно данные игры упираются в производительность CPU.

Начнём с Crysis. Мы снизили до минимума все опции за исключением детализации объектов, которую мы выставили в "High", а также Physics, которую мы установили в "Very High". В итоге производительность игры должна сильнее зависеть от CPU.

Игра Crysis показала впечатляющую зависимость от количества ядер CPU, что весьма удивляет, поскольку мы считали, что она больше реагирует на производительность видеокарты. В любом случае, можно видеть, что в Crysis одноядерные CPU дают частоту кадров в два раза меньше, чем с четырьмя ядрами (впрочем, помните, что если игра будет больше зависеть от производительности видеокарты, то разброс результатов при разном числе ядер CPU будет меньше). Интересно также отметить, что игра Crysis может использовать только три ядра, поскольку добавление четвёртого не даёт заметной разницы.

Но мы знаем, что Crysis серьёзно использует расчёты физики, поэтому давайте посмотрим, каковая будет ситуация в игре не с такой продвинутой физикой. Например, в Left 4 Dead.

Что интересно, игра Left 4 Dead демонстрирует схожий результат, хотя львиная доля прироста производительности появляется после добавления второго ядра. Есть небольшой прирост при переходе на три ядра, но вот четвёртое ядро этой игре не требуется. Интересная тенденция. Посмотрим, насколько она будет характерна для стратегии реального времени World in Conflict.

Результаты вновь схожие, но мы видим удивительную особенность - три ядра CPU дают чуть лучшую производительность, чем четыре. Разница близка к пределу погрешности, но это вновь подтверждает, что четвёртое ядро в играх не используется.

Настало время делать выводы. Поскольку данных мы получили немало, давайте упростим ситуацию, рассчитав средний прирост производительности.

Сначала хотелось бы сказать о том, что результаты синтетических тестов слишком оптимистичны, если сравнивать использование нескольких ядер с реальными приложениями. Прирост производительности синтетических тестов при переходе от одного ядра к нескольким выглядит почти линейным, каждое новое ядро добавляет 50% производительности.

В приложениях мы наблюдаем более реалистичный прогресс - около 35% прироста от второго ядра CPU, 15% прирост от третьего и 32% прирост от четвёртого. Странно, что при добавлении третьего ядра мы получаем только половину преимущества, которое даёт четвёртое ядро.

В приложениях, впрочем, лучше смотреть на отдельные программы, а не на общий результат. Действительно, приложения кодирования аудио, например, вообще не выигрывают от увеличения числа ядер. С другой стороны, приложения кодирования видео дают серьёзные преимущества от большего числа ядер CPU, хотя всё довольно сильно зависит от используемого кодера. В случае программы 3D-рендеринга 3ds Max мы видим, что она серьёзно оптимизирована под многоядерные окружения, а приложения редактирования 2D-фотографий, подобные Photoshop, не реагируют на количество ядер. Антивирус AVG показал серьёзное увеличение производительности на нескольких ядрах, а на утилитах сжатия файлов выигрыш не такой большой.

Что же касается игр, то при переходе от одного ядра на два производительность увеличивается на 60%, а после добавления в систему третьего ядра мы получаем ещё 25% отрыв. Четвёртое ядро в выбранных нами играх не даёт преимуществ. Конечно, если бы мы взяли больше игр, то ситуация могла бы измениться, но, в любом случае, трёхъядерные процессоры Phenom II X3 кажутся весьма привлекательным и недорогим выбором для геймера. Важно отметить, что при переходе на более высокие разрешения и добавлении визуальных деталей, разница из-за количества ядер будет меньшей, поскольку видеокарта станет решающим фактором, влияющим на частоту кадров.


Четыре ядра.

С учётом всего сказанного и сделанного, можно подвести ряд итогов. В целом, вам не нужно быть каким-либо профессиональным пользователем, чтобы выиграть от установки многоядерного CPU. Ситуация существенно изменилась по сравнению с тем, что было четыре года назад. Конечно, разница кажется не такой существенной на первый взгляд, но довольно интересно отметить, насколько сильно приложения стали оптимизироваться под многопоточность в последние несколько лет, особенно те программы, которые от этой оптимизации могут дать существенный прирост производительности. Фактически, можно сказать, что сегодня уже нет смысла рекомендовать одноядерные CPU (если вы такие ещё найдёте), за исключением решений с низким энергопотреблением.

Кроме того, есть приложения, для которых пользователям рекомендуется покупать процессоры с как можно большим числом ядер. Среди них отметим программы кодирования видео, 3D-рендеринга и оптимизированные рабочие приложения, включая антивирусное ПО. Что касается геймеров, то прошли дни, когда одноядерного процессора с мощной видеокартой было достаточно.

В чем различия между четырехъядерными и восьмиядерными процессорами смартфонов? Объяснение достаточно простое. В восьмиядерных чипах в два раза больше процессорных ядер, чем в четырехъядерных. На первый взгляд восьмиядерный процессор представляется вдвое более мощным, не так ли? На самом деле ничего подобного не происходит. Чтобы понять, почему восьмиядерность процессора не удваивает производительность смартфона вдвое, потребуются некоторые пояснения. уже наступило. Восьмиядерные процессоры, о которых совсем недавно можно было только мечтать, получают все большее распространение. Но, оказывается, их задача состоит не в том, чтобы повысить производительность устройства.

Четырех- и восьмиядерные процессоры. Производительность

Сами термины «восьмиядерный» и « четырехъядерный» отражают число ядер центрального процессора.

Но ключевое различие между этими двумя типами процессоров — по крайней мере по состоянию на 2015 год — состоит в способе установки процессорных ядер.

В четырехъядерном процессоре все ядра способны работать одновременно, обеспечивая быструю и гибкую многозадачность, делая более ровными 3D-игры и повышая скорость работы камеры, а также осуществляя другие задачи.

Современные восьмиядерные чипы, в свою очередь, просто состоят из двух четырехъядерных процессоров, которые распределяют между собой различные задачи в зависимости от их типа. Чаще всего в восьмиядерном чипе присутствует набор из четырех ядер с более низкой тактовой частотой, чем во втором наборе. Когда требуется выполнить сложную задачу, за нее, разумеется, берется более быстрый процессор.

Более точным термином, чем «восьмиядерный» стал бы «двойной четырехъядерный». Но это звучит не так красиво и не подходит для маркетинговых задач. Поэтому эти процессоры называют восьмиядерными.

Зачем нужны два набора процессорных ядер?

В чем причина сочетания двух наборов процессорных ядер, передающих задачи один другому, в одном устройстве? Для обеспечения энергоэффективности.

Более мощный центральный процессор потребляет больше энергии и батарею приходится чаще заряжать. А аккумуляторные батареи намного более слабое звено смартфона, чем процессоры. В результате — чем более мощен процессор смартфона, тем более емкая батарея ему нужна.

При этом для большинства задач смартфона вам не понадобится столь высокая вычислительная производительность, какую может обеспечить современный процессор. Перемещение между домашними экранами, проверка сообщений и даже веб-навигация — не столь требовательные к ресурсам процессора задачи.

Но HD-видео, игры и работа с фотографиями такими задачами являются. Поэтому восьмиядерные процессоры достаточно практичны, хотя элегантным это решение назвать трудно. Более слабый процессор обрабатывает менее ресурсоемкие задачи. Более мощный — более ресурсоемкие. В итоге сокращается общее энергопотребление по сравнению с той ситуацией, когда обработкой всех задач занимался бы только процессор с высокой тактовой частотой. Таким образом, сдвоенный процессор прежде всего решает задачу повышения энергоэффективности, а не производительности.

Технологические особенности

Все современные восьмиядерные процессоры базируются на архитектуре ARM, так называемой big.LITTLE.

Эта восьмиядерная архитектура big.LITTLE была анонсирована в октябре 2011 года и позволила четырем низкопроизводительным ядрам Cortex-A7 работать совместно с четырьмя высокопроизводительными ядрами Cortex-A15. ARM с тех пор ежегодно повторяла этот подход, предлагая более способные чипы для обоих наборов процессорных ядер восьмиядерного чипа.

Некоторые из основных производителей чипов для мобильных устройств сосредоточили свои усилия на этом образце «восьмиядерности» big.LITTLE. Одним из первых и наиболее примечательных стал собственный чип компании Samsung, известный Exynos. Его восьмиядерная модель использовалась начиная с Samsung Galaxy S4, по крайней мере в некоторых версиях устройств компании.

Сравнительно недавно Qualcomm также начала применение big.LITTLE в своих восьмиядерных чипах Snapdragon 810 CPU. Именно на этом процессоре базируются такие известные новинки рынка смартфонов, как и G Flex 2, ставший компании LG.

В начале 2015 года NVIDIA представила Tegra X1, новый суперпроизводительный мобильный процессор, который компания предназначает для автомобильных компьютеров. Основной функцией X1 является его вызываемый консольно («console-challenging») графический процессор, который также основывается на архитектуре big.LITTLE. То есть он также станет восьмиядерным.

Велика ли разница для обычного пользователя?

Велика ли разница между четырех- и восьмиядерным процессором смартфона для обычного пользователя? Нет, на самом деле она очень мала, считает Йон Манди.

Термин «восьмиядерный» вносит некоторую неясность, но на самом деле он означает дублирование четырехъядерных процессоров. В итоге получаются два работающих независимо четырехъядерных набора, объединенных одним чипом для повышения энергоэффективности.

Нужен ли восьмиядерный процессор в каждом современном смартфоне. Такой необходимости нет, полагает Йон Манди и приводит пример Apple, обеспечивающих достойную энергоэффективность своих iPhone при всего двухъядерном процессоре.

Таким образом, восьмиядерная архитектура ARM big.LITTLE является одним из возможных решений одной из самых важных задач, касающихся смартфонов — времени работы от одной зарядки батареи. По мнению Йона Манди, как только найдется другое решение этой задачи, так и прекратится тренд установки в одном чипе двух четырехъядерных наборов, и подобные решения .

Знаете ли вы другие преимущества восьмиядерных процессоров смартфонов?

* всегда актуальные вопросы, на что стоит обращать внимание при выборе процессора, чтобы не ошибиться.

Наша цель в данной статье — описать все факторы влияющие на производительность процессора и другие эксплуатационные характеристики.

Наверняка ни для кого не секрет, что процессор – является главной вычислительной единицей компьютера. Можно даже сказать – самая главная часть компьютера.

Именно он занимается обработкой практически всех процессов и задач, которые происходят в компьютере.

Будь то — просмотр видео, музыка, интернет сёрфинг, запись и чтение в памяти, обработка 3D и видео, игр. И многого другого.

Поэтому к выбору Ц ентрального П роцессора, стоит отнестись очень тщательно. Может получиться ситуация, что вы решили поставить мощную видеокарту и не соответствующий её уровню процессор. В этом случае процессор, не будет раскрывать потенциал видеокарты, что будет тормозить её работу. Процессор будет полностью загружен и буквально кипеть, а видеокарта будет ожидать своей очереди, работая на 60-70% от своих возможностей.

Именно поэтому, при выборе сбалансированного компьютера, не стоит пренебрегать процессором в пользу мощной видеокарты. Мощности процессора должно быть достаточно для раскрытия потенциала видеокарты, иначе это просто выброшенные деньги.

Intel vs. AMD

*догонялки навсегда

Корпорация Intel , располагает огромными человеческими ресурсами, и почти неисчерпаемыми финансами. Многие инновации в полупроводниковой индустрии и новые технологии идут именно из этой компании. Процессоры и разработки Intel , в среднем на 1-1,5 года опережают наработки инженеров AMD . Но как известно, за возможность обладать самыми современными технологиями – приходится платить.

Ценовая политика процессоров Intel , основывается как на количестве ядер , количестве кэша , но и на «свежести» архитектуры , производительности на такт ватт , техпроцесса чипа . Значение кэш-памяти, «тонкости техпроцесса» и другие важные характеристики процессора рассмотрим ниже. За обладание такими технологии как и свободного множителя частоты, тоже придётся выложить дополнительную сумму.

Компания AMD , в отличии от компании Intel , стремится к доступности своих процессоров для конечного потребителя и к грамотной ценовой политике.

Можно даже сказать, что AMD – «Народная марка ». В её ценниках вы найдёте то, что вам нужно по очень привлекательной цене. Обычно через год, после появления новой технологии у компании Intel , появляется аналог технологии от AMD . Если вы не гонитесь за самой высокой производительностью и больше обращаете внимание на ценник, чем на наличие передовых технологий, то продукция компании AMD – именно для вас.

Ценовая политика AMD , больше основывается на количестве ядер и совсем немного — на количестве кэш памяти, наличии архитектурных улучшений. В некоторых случаях, за возможность обладать кэш памятью третьего уровня, придётся немного доплатить (Phenom имеет кэш память 3 уровня, Athlon довольствуется только ограниченной, 2 уровня). Но иногда AMD «балует» своих фанатов возможность разблокировать более дешёвые процессоры, до более дорогих. Разблокировать можно ядра или кэш-память. Улучшить Athlon до Phenom . Такое возможно благодаря модульной архитектуре и при недостатке некоторых более дешёвых моделей, AMD просто отключает некоторые блоки на кристалле более дорогих (программно).

Ядра – остаются практически неизменными, отличается только их количество (справедливо для процессоров 2006-2011 годов). За счёт модульности своих процессоров, компания отлично справляется со сбытом отбракованных чипов, которые при отключении некоторых блоков, становятся процессором из менее производительной линейки.

Компания много лет работала над совершенно новой архитектурой под кодовым именем Bulldozer , но на момент выхода в 2011 году, новые процессоры показали не самую лучшую производительность. AMD грешила на операционные системы, что они не понимают архитектурных особенностей сдвоенных ядер и «другой многопоточности».

Со слов представителей компании, следует ждать особых исправлений и заплаток, чтобы ощутить всю производительность данных процессоров. Однако в начале 2012 года, представители компании отложили выход обновления для поддержки архитектуры Bulldozer на вторую половину года.

Частота процессора, количество ядер, многопоточность.

Во времена Pentium 4 и до него – частота процессора , была главным фактором производительности процессора при выборе процессора.

Это не удивительно, ведь архитектуры процессоров — специально разрабатывались для достижения высокой частоты, особенно сильно это отразилось как раз в процессоре Pentium 4 на архитектуре NetBurst . Высокая частота, была не эффективна при том длинном конвейере, что был использован в архитектуре. Даже Athlon XP частотой 2Ггц , по уровню производительности был выше чем Pentium 4 c 2,4Ггц . Так что, это был чистой воды маркетинг. После этой ошибки, компания Intel осознала свои ошибки и вернулась на сторону добра начала работать не над частотной составляющей, а над производительностью на такт. От архитектуры NetBurst пришлось отказаться.

Что же нам даёт многоядерность ?

Четырёх-ядерный процессор с частотой 2,4 Ггц , в много-поточных приложениях, теоретически будет примерным эквивалентом, одноядерного процессора с частотой 9,6Ггц или 2-х ядерному процессору с частотой 4,8 Ггц . Но это только теоретически . Практически же, два двухъядерных процессора в двух сокетной материнской плате, будут быстрее одного 4-ядерного, на той же частоте функционирования. Ограничения по скорости шины и задержки памяти дают о себе знать.

* при условии одинаковых архитектур и количества кэш памяти

Многоядерность, даёт возможность выполнять инструкции и вычисления по частям. К примеру нужно выполнить три арифметических действия. Первые два выполняются на каждом из ядер процессора и результаты складываются в кэш-память, где с ними может быть выполнено следующее действие любым из свободных ядер. Система очень гибкая, но без должной оптимизации может и не работать. Потому очень важна оптимизация под многоядерность для архитектуры процессоров в среде ОС.

Приложения, которые «любят» и используют многопоточность: архиваторы , плееры и кодировщики видео , антивирусы , программы дефрагментаторы , графические редакторы , браузеры , Flash .

Так же, к «любителям» многопоточности, можно отнести такие операционные системы как Windows 7 и Windows Vista , а так же многие ОС , основанные на ядре Linux , которые работают заметно быстрее при наличии многоядерного процессора.

Большинству игр , бывает вполне достаточно 2-х ядерного процессора на высокой частоте. Сейчас однако, выходит всё больше игр «заточенных» под многопоточность. Взять хотя бы такие SandBox игры, как GTA 4 или Prototype , в которые на 2-х ядерном процессоре с частотой ниже 2,6 Ггц – комфортно себя не чувствуешь, фреймрейт проваливается ниже 30 кадров в секунду. Хотя в данном случае, скорее всего причиной таких казусов является «слабая» оптимизация игр, недостаток времени или «не прямые» руки тех, кто переносил игры с консолей на PC .

При покупке нового процессора для игр, сейчас стоит обращать внимание на процессоры с 4-мя и более ядрами. Но всё же, не стоит пренебрегать 2-х ядерными процессорами из «верхней категории». В некоторых играх, данные процессоры чувствуют себя порой лучше, чем некоторые многоядерные.

Кэш память процессора.

– это выделенная область кристалла процессора, в которой обрабатываются и хранятся промежуточные данные между процессорными ядрами, оперативной памятью и другими шинами.

Она работает на очень высокой тактовой частоте (обычно на частоте самого процессора), имеет очень высокую пропускную способность и процессорные ядра работают с ней напрямую (L1 ).

Из-за её нехватки , процессор может простаивать в трудоёмких задачах, ожидая пока в кэш поступят новые данные для обработки. Так же кэш-память служит для записи часто повторяющихся данных, которые при необходимости могут быть быстро восстановлены без лишних вычислений, не заставляя процессор тратить время на них снова.

Производительности, так же добавляет факт, если кэш память объединённая, и все ядра равноправно могут использовать данные из неё. Это даёт дополнительные возможности для многопоточной оптимизации.

Такой приём, сейчас используется для кэш памяти 3-го уровня . У процессоров Intel существовали процессоры с объединённой кэш памятью 2-го уровня (C2D E 7*** , E 8*** ), благодаря которым и появился данный способ увеличить многопоточную производительность.

При разгоне процессора, кэш память может стать слабым местом, не давая разогнать процессор больше, чем её предельная частота функционирования без ошибок. Однако плюсом является то, что она будет работать на той же частоте, что и разогнанный процессор.

В общем, чем больше кэш памяти, тем быстрее процессор. В каких именно приложениях?

Во всех приложениях, где используется множество числовых данных с плавающей запятой, инструкций и потоков, кэш память активно используется. Кэш память очень любят архиваторы , кодировщики видео , антивирусы и графические редакторы и т.д.

Благоприятно к большому количеству кэш-памяти относятся игры . Особенно стратегии, авто-симуляторы, RPG, SandBox и все игры, где есть много мелких деталей, частиц, элементов геометрии, потоков информации и физических эффектов.

Кэш память играет очень немалую роль в раскрытии потенциала систем с 2-мя и более видеокартами. Ведь какая то доля нагрузки, ложится на взаимодействие ядер процессора как между собой, так и для работы с потоками нескольких видео-чипов. Именно в этом случае важна организация кэш — памяти, и очень полезна кэш память 3-го уровня большого объёма.

Кэш память, всегда оснащается защитой от возможных ошибок (ECC ), при обнаружении которых, ведётся их исправление. Это очень важно, ведь маленькая ошибочка в кэш памяти, при обработке может превратиться в гигантскую, сплошную ошибку, от которой «ляжет» вся система.

Фирменные технологии.

(гипер-поточность, HT )–

впервые технология была применена в процессорах Pentium 4 , но работала не всегда корректно и зачастую больше тормозила процессор, чем ускоряла. Причиной был слишком длинный конвейер и не доведённая до ума система предсказания ветвлений. Применяется компанией Intel , аналогов технологии пока нет, если не считать аналогом то? что реализовали инженеры компании AMD в архитектуре Bulldozer .

Принцип системы таков, что на каждое физическое ядро, создаётся по два вычислительных потока , вместо одного. То есть, если у вас 4-х ядерный процессор с HT (Core i 7 ), то виртуальных потоков у вас 8 .

Прирост производительности достигается за счёт того, что в конвейер могут поступать данные уже в его середине, а не обязательно сначала. Если какие то блоки процессора, способные выполнить это действие простаивают, они получают задачу к выполнению. Прирост производительности не такой как у настоящих физических ядер, но сопоставимый(~50-75%, в зависимости от рода приложения). Довольно редко бывает, что в некоторых приложениях, HT отрицательно влияет на производительность. Связано это с плохой оптимизацией приложений под данную технологию, невозможность понять, что присутствуют потоки «виртуальные» и отсутствие ограничителей для нагрузки потоков равномерно.

Turbo Boost – очень полезная технология, которая увеличивает частоту функционирования наиболее используемых ядер процессора, в зависимости от уровня их загруженности. Очень полезна тогда, когда приложение не умеет использовать все 4 ядра, и загружает только одно или два, при этом их частота работы повышается, что частично компенсирует производительность. Аналогом данной технологии у компании AMD , является технология Turbo Core .

, 3 dnow ! инструкции . Предназначены для ускорения работы процессора в мультимедиа вычислениях (видео, музыка, 2D/3D графика и т.д.), а так же ускоряют работу таких программ как архиваторы, программы для работы с изображениями и видео (при поддержке инструкций данными программами).

3dnow ! – довольно старая технология AMD , которая содержит дополнительные инструкции по обработке мультимедиа контента, помимо SSE первой версии .

*А именно возможность потоковой обработки вещественных чисел одинарной точности.

Наличие самой новой версии – является большим плюсом, процессор начинает более эффективно выполнять определённые задачи при должной оптимизации ПО. Процессоры AMD носят похожие названия, но немного другие.

* Пример — SSE 4.1(Intel) — SSE 4A(AMD).

К тому же, данные наборы инструкций не идентичны. Это аналоги, в которых есть небольшие отличия.

Cool’n’Quiet, SpeedStep, CoolCore, Enchanced Half State(C1E) и т . д .

Данные технологии, при низкой нагрузке уменьшают частоту процессора, посредством уменьшения множителя и напряжения на ядре, отключения части КЭШа и т.д. Это позволяет процессору гораздо меньше греться и потреблять меньше энергии, меньше шуметь. Если понадобится мощность, то процессор вернётся в обычное состояние за доли секунды. На стандартных настройках Bios практически всегда включены, при желании их можно отключить, для уменьшения возможных «фризов» при переключении в 3D играх.

Некоторые из этих технологий, управляют скоростью вращения вентиляторов в системе. К примеру, если процессор не нуждается в усиленном отводе тепла и не нагружен, скорость вентилятора процессора уменьшается (AMD Cool’n’Quiet, Intel Speed Step ).

Intel Virtualization Technology и AMD Virtualization .

Эти аппаратные технологии позволяют с помощью специальных программ запускать несколько операционных систем сразу, без какой либо сильной потери в производительности. Так же, её используют для правильной работы серверов, ведь зачастую, на них установлена далеко не одна ОС.

Execute Disable Bit и No eXecute Bit технология, призванная защитить компьютер от вирусных атак и программных ошибок, которые могут вызвать крах системы посредством переполнения буфера .

Intel 64 , AMD 64 , EM 64 T – данная технология позволяет процессору работать как в ОС с 32-х битной архитектурой, так и в ОС с 64-х битной. Система 64 bit – с точки зрения выгоды, для рядового пользователя отличается тем, что в данной системе можно использовать более 3.25Гб оперативной памяти. В 32-х битных системах, использовать бо льший объём оперативной памяти не представляется возможным, из-за ограниченного объёма адресуемой памяти* .

Большинство приложений с 32-х bit архитектурой, можно запустить на системе с 64-х битной ОС.

* Что же поделать, если в далёком 1985 году, никто и подумать не мог о таких гигантских, по меркам того времени, объёмах оперативной памяти.

Дополнительно.

Пара слов о .

На этот пункт стоит обратить пристальное внимание. Чем тоньше техпроцесс, тем меньше процессор потребляет энергии и как следствие — меньше греется. И кроме всего прочего — имеет более высокий запас прочности для разгона.

Чем более тонкий техпроцесс, тем больше можно «завернуть» в чип (и не только) и увеличить возможности процессора. Тепловыделение и энергопотребление при этом тоже уменьшается пропорционально, благодаря меньшим потерям по току и уменьшению площади ядра. Можно заметить тенденцию, что с каждым новым поколением той же архитектуры на новом техпроцессе, растёт и энергопотребление, но это не так. Просто производители идут в сторону ещё большей производительности и перешагивают за черту тепловыделения прошлого поколения процессоров из-за увеличения числа транзисторов, которое не пропорционально уменьшению техпроцесса.

Встроенное в процессор .

Если вам не нужно встроенное видео ядро, то не стоит покупать процессор с ним. Вы получите только худший отвод тепла, лишний нагрев (не всегда), худший разгонный потенциал (не всегда), и переплаченные деньги.

К тому же те ядра, что встроены в процессор, годятся только для загрузки ОС, интернет сёрфинга и просмотра видео (и то не любого качества).

Тенденции на рынке все же меняются и возможность купить производительный процессор от Intel без видео ядра выпадает всё реже. Политика принудительного навязывание встроенного видео ядра, появилась с процессоров Intel под кодовым названием Sandy Bridge , основное новшество которых и было встроенное ядро на том же техпроцессе. Видео-ядро, находится совместно с процессором на одном кристалле , и не такое простое как в предыдущих поколениях процессоров Intel . Для тех кто его не использует, есть минусы в виде некоторой переплаты за процессор, смещённость источника нагрева относительно центра тепло — распределительной крышки. Однако есть и плюсы. Отключенное видео ядро, можно использовать для очень быстрой кодировки видео с помощью технологии Quick Sync вкупе со специальным, поддерживающим данную технологию ПО. В будущем, Intel обещает расширить горизонты использования встроенного видео ядра для параллельных вычислений.

Сокеты для процессоров. Сроки жизни платформ .


Intel ведёт грубую политику для своих платформ. Срок жизни каждой (срок начала и конца продаж процессоров для неё), обычно не превышает 1.5 — 2 года. К тому же, у компании есть несколько параллельно развивающихся платформ.

Компания AMD , ведёт противоположную политику совместимости. На её платформу на AM 3 , будут подходить все процессоры будущих поколений, поддерживающие DDR3 . Даже при выходе платформы на AM 3+ и более поздних, отдельно будут выпускаться либо новые процессоры под AM 3 , либо новые процессоры будут совместимы со старыми материнскими платами, и можно будет сделать безболезненный для кошелька апгрейд, поменяв только процессор (без смены мат.платы, ОЗУ и т.д.) и прошив материнской платы. Единственные нюансы несовместимости могут быть при смене типа , так как будет требоваться другой контроллёр памяти, встроенный в процессор. Так что совместимость ограниченная и поддерживается далеко не всеми материнскими платами. Но в целом, экономному пользователю или тем, кто не привык менять платформу полностью каждые 2 года — выбор производителя процессора понятен — это AMD .

Охлаждение процессора.

В стандартной комплектации, с процессором идёт BOX -овый кулер, который будет просто справляться со своей задачей. Представляет он из себя кусок алюминия с не очень высокой площадью рассеивания. Эффективные кулеры на тепловых трубках и закреплёнными на них пластинами, имеют конструкцию, предназначенную для высокоэффективного рассеивания тепла. Если вы не хотите слышать лишний шум от работы вентилятора, то вам стоит приобрести альтернативный, более эффективный кулер с тепловыми трубками, либо систему жидкостного охлаждения замкнутого или не замкнутого типа. Такие системы охлаждения, дополнительно дадут возможность разгона для процессора.

Заключение.

Все важные аспекты, влияющие на производительность и эксплуатационные характеристики процессора, были рассмотрены. Повторим, на что следует обращать внимание:

  • Выбрать производителя
  • Архитектура процессора
  • Техпроцесс
  • Частота процессора
  • Количество ядер процессора
  • Размер и тип кэш-памяти процессора
  • Поддержка технологий и инструкций
  • Качественное охлаждение

Надеемся, данный материал поможет вам разобраться и определиться в выборе соответствующего вашим ожиданиям процессора.

От количества ядер в центральном процессоре сильно зависит общая производительность системы, особенно в многозадачном режиме. Узнать их количество можно как при помощи стороннего ПО, так и стандартными методами Windows.

Большинство процессоров сейчас 2-4 ядерные, но имеются дорогие модели для игровых компьютеров и дата-центров на 6 и даже 8 ядер. Ранее, когда центральный процессор имел всего одно ядро, вся производительность заключалась в частоте, а работа с несколькими программами одновременно могла полностью «повесить» ОС.

Определить количество ядер, а также посмотреть на качество их работы, можно при помощи решений, встроенных в саму Windows, или сторонних программ (в статье будут рассмотрены самые популярные из них).

Способ 1: AIDA64

– это популярная программа для мониторинга производительности компьютера и проведения различных тестов. ПО платное, но есть тестовый период, которого хватит для того, чтобы узнать количество ядер в ЦП. Интерфейс AIDA64 полностью переведён на русский язык.

Инструкция выглядит следующим образом:


Способ 2: CPU-Z

CPU-Z – бесплатная программа, которая позволяет получить всю основную информацию о комплектующих компьютера. Имеет простой интерфейс, который переведён на русский язык.

Чтобы узнать количество ядер при помощи этого ПО, достаточно просто его запустить. В главном окне найдите в самом низу, в правой части, пункт «Cores» . Напротив него будет написано количество ядер.

Способ 3: Диспетчер задач

Данный способ подходит только для пользователей ОС Windows 8, 8.1 и 10. Выполните эти действия, чтобы узнать количество ядер таким способом:


Способ 4: Диспетчер устройств

Этот способ подходит для всех версий Windows. Используя его, следует помнить, что на некоторые процессоры от Intel информация может быть выдана неверно. Дело в том, что ЦП от Intel используют технологию Hyper-threading, которая делит одно ядро процессора на несколько потоков, тем самым повышая производительность. Но при этом «Диспетчер устройств» может видеть разные потоки на одном ядре как несколько отдельных ядер.

Пошаговая инструкция выглядит так:


Самостоятельно узнать количество ядер в центральном процессоре несложно. Также можно просто посмотреть характеристики в документации к компьютеру/ноутбуку, если есть под рукой. Или «загуглить» модель процессора, если вы её знаете.

QX | 22 июля 2015, 14:45
Не только частота, техпроцесс тоже. Современные 2-ядерные процессоры по 3 ГГц не сравнить с первыми 2-ядерниками, из тех что тоже по 3 ГГц. Частота одинаковая, но старые просто жуткие тормоза в сравнении с новыми. В итоге современный 2-ядерный i3 намного лучше, чем 4-ядерник Quad Q6600. Даже Pentium G посвежее лучше старого Quadа.

QX | 11 июля 2015, 12:18
Здесь разница в частоте не велика, 3,5 против 3 ГГц. Потому интересны 4 ядра. Но конечно если остальные характеристики тоже не отстают. Много ядер нужно для архивации, кодирования видео и т.п. Взяв 2 ядерник ещё и сэкономить можно, слегка. Ещё вопрос, как много будете работать на нём. Ну и лучше бы Вы всё-таки обе модели конкретно назвали. А так, я бы Вам посоветовал Core i3 помощнее и посвежее.

MaKos007 | 30 марта 2015, 16:00
Я тут буду растекаться мысью по древу. потому сразу скажу - ваш выбор двухъядерный процессор с более высокой частотой. Если теория не интересна, то дальше можно не читать.

Частота процессора представляет собой, фактически, количество операций, выполняемых им в единицу времени. Таким образом, чем выше частота, тем больше действий выполняется за секунду, например.

Что же у нас с количеством ядер... При наличии более чем одного ядра процессор может обсчитывать более одной задачи. Это как ленты конвейера. Одна лента конвейера работает быстро, но две параллельные ленты, на которых идут операции, выдают в два раза больше результата. Так что в теории двухъядерные решения будут работать вдвое быстрее одноядерного.

Это теория, но как и с конвейерами, эти два потока надо чем-то нагрузить. при этом нагрузить правильно, чтобы каждая лента работала с полной отдачей. В случае с процессорами это зависит от архитектуры программ и игр, которые используют эту самую многоядерность. Если приложение умеет разделять задачи на несколько потоков (читай - использовать многоядерность процессора), то многоядерность может дать значимый прирост в скорости исполнения команд. А ежели не умеет или задачи такие, что разделить невозможно, тогда совершенно неважно много ядер в CPU или нет.

На самом деле, вопрос оптимального количества ядер - сложный. Здесь еще важна архитектура самих ядер и связей между ними. Так первые многоядерные процессоры имели значительно менее функциональное устройство, чем современные. Кроме того, следует учитывать, что современные ОС Windows 7 и Windows 8 (я не рассматриваю здесь *nix системы и их поддержку многоядерных процессоров - отдельная и очень интересная тема) найчились очень хорошо распараллеливать многие задачи. Таким образом, многоядерность помогает не тормозить основные процессы (используемые пользователем приложения и игры) из-за выполнения фоновых задач. Таким образом, антивирусная защита и фаервол не станут тормозить (точнее, в меньшей степени будут тормозить) запущенную игру или работу в Фотошопе.

Для каких программ важна многоядерность. Проведя некоторое время в интернете, можно выяснить, что она ускоряет конвертацию видео и аудио; рендеринг 3D-моделей, шифрование сигнала и т.п. Вам для работы в Photoshop и видеомонтажа не нужно 4 ядра. Вполне достаточно, как я уже говорил, двух, но с более высоким быстродействием каждого из них.

teleport | 21 апреля 2013, 01:30
Простой подсчет производительности показывает: для 2-х ядерного общая производительность 2 x 3.5 = 7, для 4-х ядерного - 4 x 3 = 12. Так что 4-х ядерный почти в 2 раза мощнее. Кроме того он наверняка современнее, а значит экономичнее и производительнее. А если используется только одно ядро - меньше греется, поскольку частота одного ядра немного ниже, но для нагрева это существенно.

Для видеомонтажа процессор скорее всего не критичен там в основном задействуются ресурсы видеокарты или специальной платы видеомонтажа. Но процессор в этом тоже учавствует и если 2-х ядерный отдаст под эту задачу одно ядро, то остальные задачи (разные антивири) будут бороться за оставшееся ядро, что приведет к жуткой тупизне. Короче многоядерность лучше.

yang | 11 апреля 2013, 20:22
В данном случае эффективнее и экономичнее во всех отношениях будет двухъядерный процессор.