Локализация функций в коре больших полушарий труды. Динамическая локализация функций в коре полушарий большого мозга. Основные центры коры больших полушарий Лобная доля

В дальнейшем усилия физиологов оказались направленными на поиск «критических» участков мозга, разрушение которых приводило к нарушению рефлекторной деятельности того или иного органа. Постепенно складывалось представление о жесткой анатомической локализации «рефлекторных дуг», а соответственно и сам рефлекс стал мыслиться как механизм работы только низших отделоз мозга (спинномозговых центров).

Вместе с тем разрабатывался вопрос о локализации функций в высших отделах мозга. Представления о локализации элементов психической деятельности в головном мозге зародились давно. Практически в каждую эпоху выдвигались те или

Иные гипотезы представительства в головном мозге высших психических функций и сознания в целом.

Австрийский врач и анатом Франц Йозеф Галль (1758- 1828) составил подробное описание анатомии и физиологии нервной системы человека, снабженное прекрасным атласом.

: Целое поколение исследователей основывалось на этих данных. К числу анатомических открытий Галля следует отнести сле- „дующие: выявление основных различий между серым и белым веществом мозга; определение начала нервов в сером веществе; окончательное доказательство перекреста пирамидных путей и зрительных нервов; установление различий между «конвергентными» (по современной терминологии «ассоциативными») и «дивергентными» («проекционными») 1волокнами (1808); первое четкое описание комиссур мозга; доказательство начала черепномозговых нервов в продолговатом мозге (1808) и др. Галль был одним из первых, кто придавал решающую роль коре больших полушарий в функциональной деятельности мозга. Так, он считал, что складчатость мозговой поверхности является прекрасным решением природой и эволюцией важной задачи: обеспечения максимального увеличения площади поверхности мозга при сохранении более или менее постоянным его объема. Галль ввел термин «дуга», знакомый каждому физиологу, и описал ее четкое деление на три части.

Однако в основном имя Галля известно в связи с его довольно сомнительным (а подчас и скандальным!) учением о локализации высших психических функций в головном мозге. Придавая большое значение соответствию функции и структуры, Галль еще в 1790 г. выступил с заявкой на введение в арсенал знаний новой науки - френологии (от греч. phren - душа, ум, сердце), которая получила также иное название - психоморфология, или узкий локализационизм. Будучи врачом, Галль наблюдал больных с различными расстройствами мозговой деятельности и заметил, что специфика заболевания во многом зависит от того, какой именно участок мозгового вещества поврежден. Это привело его к идее, что каждой психической функции соответствует особый участок мозга. Видя бесконечное разнообразие характеров и индивидуальных психических качеств людей, Галль предположил, что усиление (или большее преобладание) в поведении человека какой-либо черты характера или психической функции влечет за собой и преимущественное развитие определенного участка коры мозга, где эта функция представлена. Таким образом, был выдвинут тезис: функция делает структуру. В результате разрастания этого гипертрофированного участка коры («мозговой шишки») повышается давление на кости черепа, что, в свою очередь, обусловливает появление над соответствующей зоной мозга наружного черепного бугра. В случае недоразвития функции, наоборот.

На поверхности черепа возникнет заметное углубление («ям- »ка»). Используя созданный Галлем метод «краниоскопии» - исследования рельефа черепа с помощью пальпации - и подробные «топографические» карты поверхности головного мозга, где указывались места локализации всех способностей (считавшихся врожденными), Галль и его последователи ставили диагноз, т. е. делали заключение о характере и наклонностях человека, о его умственных и нравственных качествах. Были выделены 2? участков мозга, где локализованы те или иные способности индивида (причем 19 из них были признаны общими для человека и животных, а 8 -чисто человеческими). Кроме «шишек», ответственных за реализацию физиологических функций, были и такие, которые свидетельствовали о зрительной и слуховой памяти, ориентировке в пространстве, чувстве времени, инстинкте продолжения рода; таких личностных качествах. как смелость, честолюбие, набожность, остроумие, скрытность, влюбчивость, осторожность, самооценка, утонченность, надежда, любознательность, податливость воспитанию, самолюбие, независимость, исполнительность, агрессивность, верность, любовь к жизни, любовь к животным.

В ошибочных и лженаучных представлениях Галля (которые были, впрочем, чрезвычайно популярны в свое время) содержалось рациональное зерно: признание теснейшей связи проявлений психических функций с деятельностью коры головного мозга. На повестку дня ставилась проблема поиска дифференцированных «мозговых центров» и привлечения внимания к функциям головного мозга. Галля поистине можно считать основоположником «мозговой локализации». Безусловно, что для дальнейшего прогресса психофизиологии постановка такой проблемы была более перспективной, чем старинный поиск местонахождения «общего чувствилища».

Решению вопроса о локализации функций в коре головного мозга способствовали данные, накапливающиеся в клинической практике и в экспериментах на животных. Немецкий врач, анатом и физик Юлиус Роберт Майер (1814-1878), практиковавший в течение долгого времени в парижских клиниках, а также служивший в должности судового врача, наблюдал у больных с черепно-мозговыми травмами зависимость нарушения (или полного выпадения) той или иной функции от повреждения определенного участка мозга. Это позволило ему предположить, что в коре больших полушарий локализована память (надо отметить, что еще в XVII в. к подобному вывоту пришел Т. Виллис), в белом веществе головного мозга-воображение и суждения, в базальных ганглиях-апперцепция, и воля. Своеобразный «интегральный орган» поведения и психики представляют, по мнению Майера, мозолистое тело и мозжечок.

Со временем клиническое изучение последствий повреждения мозга дополнилось лабораторным методом искусственной экстирпации (от лат. ex(s)tirpatio-удаление с корнем), позволяющим частично или полностью разрушать (удалять) участки мозга животных для определения их функциональной роли в мозговой деятельности. В начале XIX в. проводили преимущественно острые опыты на животных (лягушки, птицы), позже, с развитием методов асептики, стали осуществлять хронические эксперименты, которые давали возможность наблюдать поведение животных в течение более или менее продолжительного времени после операции. Удаление различных участков мозга (в том числе коры больших полушарий) у млекопитающих (кошки, собаки, обезьяны) позволяло выяснить- структурно-функциональные основы сложных поведенческих реакций.

Оказалось, что лишение животных высших отделов головного мозга (птиц-переднего мозга, млекопитающих - коры головного мозга) в целом не вызывало нарушения основных функций: дыхания, пищеварения, выделения, кровообращения, обмена веществ и энергии. Животные сохраняли способность двигаться, реагировать на те или иные внешние воздействия. Следовательно, регуляция этих физиологических проявлений жизнедеятельности происходит на нижележащих (по сравнению с корой больших полушарий) уровнях головного мозга. Однако при удалении высших отделов мозга происходили глубокие изменения поведения животных: они становились практически слепыми и глухими, «глупели»; теряли ранее приобретенные навыки и не могли выработать новые, не могли адекватно ориентироваться в среде, не различали и не могли дифференцировать предметы в окружающем пространстве. Одним словом, животные становились «живыми автоматами» с однообразными и довольно примитивными способами реагирования.

В экспериментах с частичным удалением областей коры больших полушарий обнаружилось, что мозг функционально неоднороден и разрушение той или иной области приводит к нарушению определенной физиологической функции. Так, выяснилось, что затылочные области коры связаны со зрительной функцией, височные - со слуховой, область сигмовидной извилины- с двигательной функцией, а также с кожной и мышечной чувствительностью. Более того, эта дифференциация- функций в отдельных участках высших отделов мозга совершенствуется по мере эволюционного развития животных.

Стратегия научных поисков в изучении функций мозга привела к тому, что дополнительно к методу экстирпации ученые стали использовать и метод искусственного раздражения определенных областей мозга с помощью электрической стимуляции, который также позволял оценивать функциональную роль важнейших отделов мозга. Данные, полученные с помощью этих методов лабораторных исследований, а также результаты клинических наблюдений наметили одно из основных направлений психофизиологии XIX в. - определение локализации нервных центров, отвечающих за высшие психические функции и поведение организма в целом. Так. в 1861 г. французский ученый, антрополог и хирург Поль Брока (1824- 1880) на основании клинических фактов решительно высказался против физиологической равноценности коры большого мозга. При вскрытии трупов больных, страдающих расстройством речи в форме двигательной афазии (больные понимали чужую речь, но сами разговаривать не могли), он обнаружил изменения в задней части нижней (третьей) лобной извилины левого полушария или в белом веществе под этим участком коры. Таким образом, в результате этих наблюдений Брока установил, положение двигательного (моторного) центра речи, позже названного его именем. В 1874 г. немецким психиатром и невропатологом К? Вернике (1848-1905) был описан сенсорный центр речи (сегодня носящий его имя) в задней трети первой височной извилины левого полушария. Поражение этого центра приводит к утрате способности понимать человеческую речь (сенсорная афазия). Еще раньше, в 1863 г., при помощи метода электрического раздражения определенных участков коры (прецентральной извилины, прецентральной области, переднего отдела околоцентральной дольки, задних отделов верхней и средней лобных извилин) немецкими исследователями Густавом Фричем и Эдуардом Гитцигом были установлены двигательные центры (двигательные корковые поля), раздражение которых вызывало определенные сокращения скелетной мускулатуры," а разрушение приводило к глубоким расстройствам двигательного поведения. В 4874 г. киевским анатомом и врачом Владимиром Алексеевичем Бецом (1834- 1894) были обнаружены эфферентные нервные клетки двигательных центров - гигантские пирамидные клетки V слоя коры, названные в честь него клетками Беца. Немецкий исследователь Герман Мунк (ученик И. Мюллера и Э. Дюбуа-Реймона) открыл не только двигательные корковые поля, с помощью метода экстирпации он нашел центры чувственных восприятий. Ему удалось показать, что центр зрения находится в задней доле мозга, центр слуха - в височной доле. Удаление затылочной доли мозга приводило к потере животйым способности видеть (при полной сохранности зрительного аппарата). Уже в

начале XX в. выдающимся австрийским неврологом Константином Экономо (1876-1931) были установлены центры глотания и жевания в так называемом черном веществе головного" мозга (1902), центры, управляющие сном, -в среднем мозге (1917). Забегая немного вперед, скажем, что Экономо дал прекрасное описание строения коры мозга взрослого человека и в 1925 г. уточнил цитоархитектоническую карту корковых полей мозга, нанеся на нее 109 полей.

Вместе с тем надо отметить, что в XIX в. против позиции узких локализационистов, согласно взглядам которых двигательные и сенсорные функции приурочены к различным областям коры головного мозга, выдвигались серьезные доводы. Так, возникла теория равноценности участков коры, утверждающая представление о равном значении кортикальных образований для осуществления любой деятельности организма,- эквипотенциализм. В этой связи френологические взгляды Галля - одного из самых яростных сторонников локализацио- низма - подверг критике французский физиолог Мари Жан Пьер Флуранс (1794-1867). Еще в 1822 г. он указал на наличие в продолговатом мозге дыхательного центра (названного им «жизненным узлом»); связывал координацию движений с деятельностью мозжечка, зрение - с четверохолмием; основную функцию спинного мозга видел в проведении возбуждения по нервам. Однако, несмотря на столь, казалось бы, локализационистские взгляды, Флуранс считал, что основные- психические процессы (в том числе интеллект и воля), лежащие в основе целенаправленного поведения человека, осуществляются в результате деятельности головного мозга как целостного образования и поэтому целостная поведенческая функция не может быть приурочена к какому-либо отдельному анатомическому образованию. Большую часть своих экспериментов Флуранс проводил на голубях и курах, удаляя у них отдельные участки мозга и наблюдая за изменением в поведении птиц. Обычно через некоторое время после операции поведение птиц восстанавливалось независимо от того, какие районы мозга были повреждены, поэтому Флуранс сделал вывод, что степень нарушения разных форм поведения определяется прежде всего тем, какой объем мозговой ткани был извлечен во время операции. Усовершенствовав технику операций, он первый сумел полностью удалить у животных полушария переднего мозга и сохранить им жизнь для дальнейших наблюдений.

На основании экспериментов Флуранс пришел к заключению, что полушария переднего мозга играют определяющую роль в реализации поведенческого акта. Их полное удаление приводит к выпадению всех «интеллектуальных» функций. Более того, особо тяжелые нарушения поведения наблюдались у кур после разрушения серого вещества поверхности полушарий мозга - так называемой кортикоидной пластинки, аналога коры головного мозга млекопитающих. Флуранс предпо - ложил, что эта область мозга является местом обитания души, или «управляющего духа», и поэтому действует как единое целое, имея однородную и равноценную массу (подобную, например, тканевой структуре печени). Несмотря на несколько^ фантастические представления эквипотенциалистов, следует отметить прогрессивный элемент в их взглядах. Во-первых, сложные психофизиологические отправления признавались результатом совокупной деятельности мозговых образований. Во-вторых, была выдвинута идея высокой динамической пластичности мозга, выражающейся во взаимозамещаемости его частей.

  • Галлю удалось достаточно точно определить «центр речи», но «официально» его открыл французский исследователь Поль Брока (1861).
  • В 1842 г. Майер, работая над определением механического эквивалента теплоты, пришел к обобщающему закону сохранения энергии.
  • В отличие от своих предшественников, наделяющих нерв способностью ощущать (т. е. признающих за ним некое психическое качество), Холлсчитал нервное окончание (в органе чувств) «апсихическим» образованием.

Лекция 12. ЛОКАЛИЗАЦИЯ ФУНКЦИЙ В КОРЕ БОЛЬШИХ ПОЛУШАРИЙ Корковые зоны. Проекционные корковые зоны: первичные и вторичные. Моторные (двигательные) зоны коры больших полушарий. Третичные корковые зоны.

Выпадения функций, наблюдаемые при поражении различных отделов коры (внутренней поверхности). 1 - расстройства обоняния (при одностороннем поражении не наблюдаются); 2 - расстройства зрения (гемианопсии); 3 - расстройства чувствительности; 4 - центральные параличи или парезы. Данные экспериментальных исследований по разрушению или удалению определенных участков коры и клинические наблюдения свидетельствуют о приуроченности функций к деятельности определенных участков коры. Участок коры большого мозга, обладающий некоторой специфической функцией, называется корковой зоной. Различают проекционные, ассоциативные корковые зоны и двигательные (моторные).

Проекционная корковая зона – это корковое представительство анализатора. Нейроны проекционных зон получают сигналы одной модальности (зрительных, слуховых и т. д.). Различают: - первичные проекционные зоны; - вторичные проекционные зоны, обеспечивающие интегративную функцию восприятия. В зоне того или иного анализатора выделяют также третичные поля, или ассоциативные зоны.

Первичные проекционные поля коры получают информацию, опосредованную через наименьшее количество переключений в подкорке (в таламусе, промежуточном мозге). На этих полях как бы спроецирована поверхность периферических рецепторов. Нервные волокна поступают в кору больших полушарий главным образом из таламуса (это афферентные входы).

Проекционные зоны анализаторных систем занимают наружную поверхность коры задних отделов мозга. Сюда входят зрительная (затылочная), слуховая (височная) и общечувствительная (теменная) области коры. В корковый отдел включается также представительство вкусовой, обонятельной, висцеральной чувствительности

Первичные сенсорные области (поля Бродмана): зрительная - 17, слуховая - 41 и соматосенсорная - 1, 2, 3 (в совокупности их принято называть сенсорной корой), моторная (4) и премоторная (6) кора

Первичные сенсорные области (поля Бродмана): зрительная - 17, слуховая - 41 и соматосенсорная - 1, 2, 3 (в совокупности их принято называть сенсорной корой), моторная (4) и премоторная (6) кора Каждое поле коры мозга характеризуется особым составом нейронов, их расположением и связями между ними. Поля сенсорной коры, в которых происходит первичная переработка информации от сенсорных органов, резко отличаются от первичной моторной коры, ответственной за формирование команд для произвольных движений мышц.

В моторной коре преобладают нейроны, по форме напоминающие пирамиды, а сенсорная кора представлена преимущественно нейронами, форма тел которых напоминает зерна, или гранулы, почему их и называют гранулярными. Строение коры большого мозга I. молекулярный II. наружный зернистый III. наружный пирамидный IV. внутренний зернистый V. ганглиозный (гигантских пирамид) VI. полиморфный

Нейроны первичных проекционных зон коры обладающих в основном высочайшей специфичностью. Так, например, нейроны зрительных областей избирательно реагируют на оттенки цвета, направление движения, характер линий и т. п. Однако в первичны зонах отдельных областей коры находятся также нейроны мультимодального типа, реагирующие на несколько видов раздражителей и нейроны, реакция которых отражает воздействие неспецифических (лимбикоретикулярных) систем.

В первичных полях заканчиваются проекционные афферентные волокна. Так, поля 1 и 3, занимающие медиальную и латеральную поверхность задней центральной извилины, являются первичными проекционными полями кожной чувствительности поверхности тела.

Функциональная организация проекционных зон в коре основана на принципе топической локализации. Расположенные рядом друг с другом воспринимающие элементы на периферии (например, участки кожи) проецируются на корковой поверхности также рядом друг с другом.

В медиальной части представлены нижние конечности, а наиболее низко на латеральной части извилины расположены проекции рецепторных полей кожной поверхности головы. При этом участки поверхности тела, богато снабженные рецепторами (пальцы, губы, язык), проецируются на большую площадь коры, чем участки, имеющие меньшее количество рецепторов (бедро, спина, плечо).

Поля 17- 19, расположенные в затылочной доле, являются зрительным центром коры, 17 -е поле, занимающее сам затылочный полюс, является первичным. Прилежащие к нему 18 -е и 19 -е поля выполняют функцию вторичных полей и получают входы от 17 -го поля.

В височных долях расположены слуховые проекционные поля (41, 42). Рядом с ними на границе височной, затылочной и теменной долей расположены 37 -е, 39 -е и 40 -е, характерные только для коры головного мозга человека. У большей части людей в этих полях левого полушария расположен центр речи, отвечающий за восприятие устной и письменной речи.

Вторичные проекционные поля, получающие информацию из первичных, расположены рядом с ними. Для нейронов этих полей характерно восприятие сложных признаков раздражителей, однако при этом сохраняется специфичность, соответствующая нейронам первичных зон. Усложнение детекторных свойств нейронов вторичных зон может происходить путем конвергенции на них нейронов первичных зон. Во вторичных зонах (18 -е и 19 -е поля Бродмана) появляются детекторы более сложных элементов контура: края ограниченной длины линий, углов с различной ориентацией и др.

Моторные (двигательные) зоны коры больших полушарий - это участки двигательной коры, нейроны которой вызывают двигательный акт. Двигательные области коры расположены в прецентральной извилине лобной доли (впереди от проекционных зон кожной чувствительности). Эту часть коры занимают поля 4 и 6. Из V слоя этих полей берет начало пирамидный путь, заканчивающийся на мотонейронах спинного мозга.

Премоторная зона (поле 6) Премоторная зона коры расположена перед моторной зоной, она отвечает за тонус мышц и осуществляющую координированные движения головы и туловища. Главные эфферентные выходы из коры – аксоны пирамид V слоя. Это эфферентные, двигательные нейроны, участвующие в регуляции двигательных функций.

Третичные или межанализаторные зоны (ассоциативные) Префронтальная зона (поля 9, 10, 45, 46, 47, 11), теменно-височная (поля 39, 40) Афферентные и эфферентные проекционные зоны коры занимают относительно небольшую ее площадь. Большая часть поверхности коры занята третичными или межанализаторными зонами, называемыми ассоциативными. Они получают полимодальные входы от сенсорных областей коры и таламических ассоциативных ядер и имеют выходы на двигательные зоны коры. Ассоциативные зоны обеспечивают интеграцию сенсорных входов и играют существенную роль в психической деятельности (обучения, мышления).

Функции различных зон новой коры: 5 3 7 6 4 1 2 Память, потребности Запуск поведения 1. Затылочная доля – зрительная кора. 2. Височная доля – слуховая кора. 3. Передняя часть теменной доли – болевая, кожная и мышечная чувствительность. 4. Внутри боковой борозды (островковая доля) – вестибулярная чувствительность и вкус. 5. Задняя часть лобной доли – двигательная кора. 6. Задняя часть теменной и височной долей – ассоциативная теменная кора: объединяет потоки сигналов от разных сенсорных систем, речевые центры, центры мышления. 7. Передняя часть лобной доли – ассоциативная лобная кора: с учетом сенсорных сигналов, сигналов от центров потребностей, памяти и мышления принимает решения о запуске поведенческих программ («центр воли и инициативы»).

Отдельные крупные ассоциативные области расположены рядом с соответствующими сенсорными зонами. Некоторые ассоциативные зоны выполняют лишь ограниченную специализированную функцию и связаны с другим ассоциативными центрами, способными подвергать информацию дальнейшей обработке. Например, звуковая ассоциативная зона анализирует звуки, разделяя их на категории, а затем передает сигналы в более специализированные зоны, такие как речевая ассоциативная зона, где воспринимается смысл услышанных слов.

Ассоциативные поля теменной доли объединяют информацию, приходящую от соматосенсорной коры (от кожи, мышц, сухожилий и суставов относительно положения тела и его движений) - со зрительной и слуховой информацией, поступающей из зрительной и слуховой коры затылочной и височной долей. Эта объединённая информация помогает иметь точное представление о собственном теле во время передвижений в окружающем пространстве.

Область Вернике и область Брока - две области головного мозга, участвующие в процессе воспроизведения и понимание информации, связанной с речью. Обе области расположены вдоль Сильвиевой борозды (латеральной борозды полушарий мозга). Афазия – полная или частичная утрата речи, обусловленная локальными поражениями головного мозга.

На основании многочисленных исследований с определенной точностью установлено функциональное значение различных областей коры полушарий большого мозга.

Участки коры полушарий, имеющие характерную цитоархитектонику, и нервные связи, участвующие в выполнении определенных функций, являются нервными центрами. Поражение таких участков коры проявляется в утрате присущих им функций. Нервные центры коры полушарий большого мозга могут быть разделены на проекционные и ассоциативные.

Проекционные центры – это участки коры полушарий большого мозга, представляющие собой корковую часть анализатора, имеющие непосредственную морфофункциональную связь через афферентные или эфферентные проводящие пути с нейронами подкорковых центров. Они осуществляют первичную обработку поступающей сознательной афферентной информации и реализацию осознанной эфферентной информации (произвольные двигательные акты).

Ассоциативные центры – это участки коры полушарий большого мозга, не имеющие непосредственной связи с подкорковыми образованиями, а связанные временной двусторонней связью с проекционными центрами. Ассоциативные центры играют первостепенную роль в осуществлении высшей нервной деятельности (глубокая обработка сознательной афферентной информации, мыслительная деятельность, память и т.д.).

В настоящее время достаточно точно выяснена динамическая локализация некоторых функций коры полушарий большого мозга.

Участки коры полушарий большого мозга, не являющиеся проекционными или ассоциативными центрами, участвуют в выполнении межанализаторной интегративной деятельности головного мозга.

Проекционные нервные центры коры полушарий большого мозга развиваются как у человека, так и у высших позвоночных животных. Они начинают функционировать сразу же после рождения. Формирование этих центров завершается гораздо раньше, чем ассоциативных. В практическом отношении важными являются следующие проекционные центры.

1. Проекционный центр общей чувствительности (тактильной, болевой, температурной и сознательной проприоцептивной) также называют кожным анализатором общей чувствительности. Он локализуется в коре постцентральной извилины (поля 1, 2, 3). В нем заканчиваются волокна, идущие в составе таламо-коркового пути. Каждый участок противоположной половины тела имеет отчетливую проекцию в корковом конце кожного анализатора (соматотопическая проекция). В верхнем отделе постцентральной извилины проецируются нижняя конечность и туловище, в среднем – верхняя конечность и в нижнем – голова (сенсорный гомункулюс Пенфилда). Размеры проекционных зон соматосенсорной коры прямо пропорциональны количеству рецепторов, находящихся в кожных покровах. Этим объясняется наличие наиболее крупных соматосенсорных зон, соответствующих лицу и кисти (рис. 3.25). Поражение постцентральной извилины вызывает утрату тактильной, болевой, температурной чувствительности и мышечно-суставного чувства на противоположной половине тела.

Рис. 3.25.

  • 1 – половые органы; 2 – стопа; 3 – бедро; 4 – туловище; 5 – кисть; 6 – указательный и большой пальцы кисти; 7 – лицо; 8 – зубы; 9 – язык; 10 – глотка и внутренние органы
  • 2. Проекционный центр двигательных функций (кинестетический центр), или двигательный анализатор, располагается в двигательной области коры, включающей пред- центральиую извилину и околоцентральную дольку (поля 4, 6). В 3–4-м слоях коры двигательного анализатора заканчиваются волокна, идущие в составе таламо-коркового пути.

Здесь осуществляется анализ проприоцептивных (кинестетических) раздражений. В пятом слое коры располагается ядро двигательного анализатора, от нейроцитов которого берут начало корково-спинномозговой и корково-ядерный пути. В предцентральной извилине также имеется четкая соматотопическая локализация двигательных функций. Мышцы, выполняющие сложные и тонко дифференцированные движения, имеют большую проекционную зону в коре предцентральной извилины. Наибольшую площадь занимает проекция мышц языка, лица и кисти, наименьшую – проекция мышц туловища и нижних конечностей. Соматотопическая проекция на предцентральную извилину носит название "моторный гомункулюс Пенфилда". Тело человека проецируется на извилине "вверх ногами", причем проекция осуществляется на кору противоположного полушария (рис. 3.26).

Афферентные волокна, заканчивающиеся в чувствительных слоях коры кинестетического центра, первоначально проходят в составе путей Голля, Бурдаха и ядерно-таламического тракта, проводящих импульсы сознательной проприоцептивной чувствительности. Поражение предцентральной извилины приводит к нарушению восприятия раздражений от скелетных мышц, связок, суставов и надкостницы. Корково-спинномозговой и корково-ядерный пути проводят импульсы, обеспечивающие сознательные движения, и оказывают тормозное воздействие на сегментарный аппарат ствола головного и спинного мозга. Корковый центр двигательного анализатора через систему ассоциативных волокон имеет многочисленные связи с различными корковыми сенсорными центрами (центром общей чувствительности, центром зрения, слуха, вестибулярных функций и т.д.). Указанные связи необходимы для выполнения интегративных функций при выполнении произвольных движений.

3. Проекционный центр схемы тела располагается в области внутритеменной борозды (поле 40s). В нем представлены соматотопические проекции всех частей тела. В центр схемы тела поступают импульсы преимущественно сознательной проприоцептивной чувствительности. Основное функциональное назначение данного проекционного центра – определение положения тела и отдельных его частей в пространстве и оценка тонуса мускулатуры. При поражении верхней теменной дольки наблюдается нарушение таких функций, как узнавание частей собственного тела, ощущение лишних конечностей, нарушения определения положения отдельных частей тела в пространстве.

Рис. 3.26.

  • 1 – стопа; 2 – голень; 3 – колено; 4 – бедро; 5 – туловище; 6 – кисть; 7 – большой палец кисти; 8 – шея; 9 – лицо; 10 – губы; 11 – язык; 12 – гортань
  • 4. Проекционный центр слуха, или ядро слухового анализатора, располагается в средней трети верхней височной извилины (поле 22). В этом центре заканчиваются волокна слухового пути, происходящие от нейронов медиального коленчатого тела (подкорковый центр слуха) своей и, преимущественно, противоположной сторон. В конечном счете волокна слухового пути проходят в составе слуховой лучистости.

При поражении проекционного центра слуха с одной стороны отмечается понижение слуха на оба уха, причем с противоположной стороны от очага поражения слух снижается в большей степени. Полная глухота наблюдается только при двустороннем поражении проекционных центров слуха.

5. Проекционный центр зрения, или ядро зрительного анализатора, локализуется на медиальной поверхности затылочной доли, по краям шпорной борозды (поле 17). В нем заканчиваются волокна зрительного пути со своей и противоположной сторон, происходящие от нейронов латерального коленчатого тела (подкорковый центр зрения). На шпорную борозду имеется определенная соматотопическая проекция различных участков сетчатки.

Одностороннее поражение проекционного центра зрения сопровождается частичной слепотой на оба глаза, но в различных участках сетчатки. Полная слепота наступает только при двустороннем поражении.

  • 6. Проекционный центр обоняния, или ядро обонятельного анализатора, располагается на медиальной поверхности височной доли в коре парагиппокампальной извилины и в крючке. Здесь заканчиваются волокна обонятельного пути со своей и противоположной сторон, происходящие от нейронов обонятельного треугольника. При одностороннем поражении проекционного центра обоняния отмечаются снижение обоняния и обонятельные галлюцинации.
  • 7. Проекционный центр вкуса, или ядро вкусового анализатора, располагается там же, где и проекционный центр обоняния, т.е. в лимбической области мозга (крючок и парагиппокампальная извилина). В проекционном центре вкуса заканчиваются волокна вкусового пути своей и противоположной сторон, происходящие от нейронов базальных ядер таламуса. При поражении лимбической области наблюдаются расстройства вкуса, обоняния, нередко появляются соответствующие галлюцинации.
  • 8. Проекционный центр чувствительности от внутренних органов, или анализатор висцероцепции, располагается в нижней трети постцентральной и предцентральной извилин (поле 43). В корковую часть анализатора висцероцепции поступают афферентные импульсы от гладкой мускулатуры и слизистых оболочек внутренних органов. В коре данной области заканчиваются волокна интероцептивного пути, происходящие от нейронов вентролатеральных ядер таламуса, в которые информация поступает по ядерно-таламическому тракту. В проекционном центре висцероцепции анализируются главным образом болевые ощущения от внутренних органов и афферентные импульсы от гладкой мускулатуры.
  • 9. Проекционный центр вестибулярных функций, несомненно, имеет свое представительство в коре полушарий большого мозга, однако сведения о его локализации неоднозначны. Принято считать, что проекционный центр вестибулярных функций располагается в области средней и нижней височных извилин (поля 20, 21). Определенное отношение к вестибулярному анализатору имеют также прилежащие отделы теменной и лобной долей. В коре проекционного центра вестибулярных функций заканчиваются волокна, происходящие от нейронов срединных ядер таламуса. Поражения указанных корковых центров проявляются спонтанным головокружением, ощущением неустойчивости, чувством проваливания, ощущением движения окружающих предметов и деформации их контуров.

Завершая рассмотрение проекционных центров, следует отметить, что корковые анализаторы общей чувствительности получают афферентную информацию с противоположной стороны тела, поэтому поражение центров сопровождается расстройствами определенных видов чувствительности только на противоположной стороне тела. Корковые анализаторы специальных видов чувствительности (слуховой, зрительной, обонятельной, вкусовой, вестибулярной) связаны с рецепторами соответствующих органов своей и противоположной сторон, поэтому полное выпадение функций данных анализаторов наблюдается только при поражении соответствующих зон коры полушарий большого мозга с обеих сторон.

Ассоциативные нервные центры. Эти центры формируются позже, чем проекционные, причем сроки кортикализации, т.е. созревания коры головного мозга, в данных центрах неодинаковы. Ассоциативные центры отвечают за мыслительные процессы, память и реализацию словесной функции.

  • 1. Ассоциативный центр "стереогнозии ", или ядро кожного анализатора (центр узнавания предметов на ощупь). Этот центр располагается в верхней теменной дольке (поле 7). Он двусторонний: в правом полушарии – для левой кисти, в левом – для правой. Центр "стереогнозии" связан с проекционным центром общей чувствительности (постцентральная извилина), из которого нервные волокна проводят импульсы болевой, температурной, тактильной и проприоцептивной чувствительности. Поступающие импульсы в ассоциативном корковом центре анализируются и синтезируются, в результате чего происходит узнавание ранее встречавшихся предметов. На протяжении всей жизни центр "стереогнозии" постоянно развивается и совершенствуется. При поражении верхней теменной дольки больные теряют способность с закрытыми глазами создавать общее целостное представление о предмете, т.е. не могут узнать этот предмет на ощупь. Отдельные свойства предметов, такие как форма, объем, температура, плотность, масса, определяются правильно.
  • 2. Ассоциативный центр "праксии", или анализатор целенаправленных привычных движений. Данный центр располагается в нижней теменной дольке в коре надкраевой извилины (поле 40), у правшей – в левом полушарии большого мозга, у левшей – в правом. У некоторых людей центр "праксии" формируется в обоих полушариях, такие люди в одинаковой мере владеют правой и левой руками и называются амбидекстрами.

Центр "праксии" развивается в результате многократного повторения сложных целенаправленных действий. В результате закрепления временных связей формируются привычные навыки, например работа на пишущей машинке, игра на рояле, выполнение хирургических манипуляций и т.д. По мере накопления жизненного опыта центр праксии постоянно совершенствуется. Кора в области надкраевой извилины имеет связи с задней и передней центральными извилинами.

После осуществления синтетической и аналитической деятельности из центра "праксии" информация поступает в прецентральную извилину к пирамидным нейронам, откуда по корково-спинномозговому пути достигает двигательных ядер передних рогов спинного мозга.

3. Ассоциативный центр зрения, или анализатор зрительной памяти, располагается на верхнелатеральной поверхности затылочной доли (поля 18–19), у правшей – в левом полушарии, у левшей – в правом. В нем обеспечивается запоминание предметов по их форме, внешнему виду, цвету. Считают, что нейроны поля 18 обеспечивают зрительную память, а нейроны поля 19 – ориентацию в непривычной обстановке. Поля 18 и 19 имеют многочисленные ассоциативные связи с другими корковыми центрами, благодаря чему происходит интегративное зрительное восприятие.

При поражении центра зрительной памяти развивается зрительная агнозия. Чаще наблюдается частичная агнозия (нс узнает знакомых, свой дом, себя в зеркале). При поражении поля 19 отмечается искаженное восприятие предметов, больной не узнает знакомых предметов, но он их видит, обходит препятствия.

Нервной системе человека присущи специфические центры. Это центры второй сигнальной системы, обеспечивающие способность общения между людьми посредством членораздельной человеческой речи. Человеческая речь может воспроизводиться в виде исполнения членораздельных звуков ("артикуляция") и изображения письменных знаков ("графика"). Соответственно в коре головного мозга формируются ассоциативные речевые центры – акустический и оптический центры речи, центр артикуляции и графический центр речи. Названные ассоциативные речевые центры закладываются вблизи соответствующих проекционных центров. Они развиваются в определенной последовательности, начиная с первых месяцев после рождения, и могут совершенствоваться до глубокой старости. Рассмотрим ассоциативные речевые центры в порядке их формирования в головном мозге.

4. Ассоциативный центр слуха, или акустический центр речи (центр Вернике), расположен в коре задней трети верхней височной извилины. Здесь заканчиваются нервные волокна, происходящие от нейронов проекционного центра слуха (средняя треть верхней височной извилины). Ассоциативный центр слуха начинает формироваться на втором-третьем месяце после рождения. По мере формирования центра ребенок начинает различать среди окружающих звуков членораздельную речь, вначале отдельные слова, а затем словосочетания и сложные предложения.

При поражении центра Вернике у больных развивается сенсорная афазия. Она проявляется в виде утраты способности понимать свою и чужую речь, хотя больной хорошо слышит, реагирует на звуки, по ему кажется, что окружающие разговаривают на незнакомом ему языке. Отсутствие слухового контроля за собственной речью приводит к нарушению построения предложений, речь становится непонятной, насыщенной бессмысленными словами и звуками. При поражении центра Вернике, поскольку он имеет прямое отношение к речеобразованию, страдает не только понимание слов, но и их произношение.

5. Ассоциативный двигательный центр речи (речедвигательный), или центр артикуляции речи (центр Брока), расположен в коре задней трети нижней лобной извилины (поле 44) в непосредственной близости от проекционного центра двигательных функций (предцентральная извилина). Речедвигательный центр начинает формироваться на третьем месяце после рождения. Он односторонний – у правшей он развивается в левом полушарии, у левшей – в правом. Информация из речедвигательного центра поступает в предцентральную извилину и далее по корково-ядерному пути – к мышцам языка, гортани, глотки, мышцам головы и шеи.

При поражении речедвигательного центра возникает моторная афазия (утрата речи). При частичном поражении речь может быть замедлена, затруднена, скандирована, бессвязна, нередко характеризуется лишь отдельными звуками. Речь окружающих больные понимают.

6. Ассоциативный оптический центр речи, или зрительный анализатор письменной речи (центр лексии, или центр Дежерина), находится в угловой извилине (поле 39). К нейронам оптического центра речи поступают зрительные импульсы от нейронов проекционного центра зрения (поля 17). В центре "лексии" происходит анализ зрительной информации о буквах, цифрах, знаках, буквенном составе слов и понимании их смысла. Центр формируется с трехлетнего возраста, когда ребенок начинает узнавать буквы, цифры и оценивать их звуковое значение.

При поражении центра "лексии" наступает алексия (расстройство чтения). Больной видит буквы, но не понимает их смысла и, следовательно, не может прочесть текст.

7. Ассоциативный центр письменных знаков, или двигательный анализатор письменных знаков (центр графин), располагается в заднем отделе средней лобной извилины (поле 8) рядом с предцентральной извилиной. Центр "графин" начинает формироваться на пятом-шестом году жизни. В этот центр поступает информация из центра "праксии", предназначенная для обеспечения тонких, точных движений руки, необходимых для написания букв, цифр, для рисования. От нейронов центра "графин" аксоны направляются в среднюю часть предцентральной извилины. После переключения информация по корково-спинномозговому пути направляется к мышцам верхней конечности. При поражении центра "графин" теряется способность написания отдельных букв, возникает "аграфия".

Таким образом, речевые центры имеют одностороннюю локализацию в коре полушарий большого мозга. У правшей они располагаются в левом полушарии, у левшей – в правом. Следует отметить, что ассоциативные речевые центры развиваются на протяжении всей жизни.

8. Ассоциативный центр сочетанного поворота головы и глаз (кортикальный центр взора) располагается в средней лобной извилине (поле 9) кпереди от двигательного анализатора письменных знаков (центр графин). Он осуществляет регуляцию сочетанного поворота головы и глаз в противоположную сторону за счет импульсов, поступающих в проекционный центр двигательных функций (предцентральная извилина) от проприоцепторов мышц глазных яблок. Кроме того, в этот центр поступают импульсы от проекционного центра зрения (кора в области шпорной борозды – поле 17), происходящие от нейронов сетчатки глаза.

Этот вопрос крайне важен теоретически и особенно практически. Уже Гиппократу было известно, что ранения головного мозга ведут к параличам и судорогам на противоположной половине тела, а иногда сопровождаются и утратой речи.

В 1861 г. французский анатом и хирург Брока на аутопсии трупов нескольких больных, страдавших расстройством речи в форме двигательной афазии, обнаружил глубокие изменения в pars opercularis третьей лобной извилины левого полушария или в белом веществе под этим участком коры. На основании своих наблюдений Брока установил в коре головного мозга двигательный центр речи, впоследствии названный его именем.

В пользу функциональной специализации отдельных участков полушарий высказался и английский невропатолог Джексон (1864) на основании клинических данных. Несколько позднее (1870) немецкие исследователи Фритч и Гитциг доказали существование в коре головного мозга собаки особых участков, раздражение которых слабым электрическим током сопровождается сокращением отдельных мышечных групп. Это открытие вызвало большое число экспериментов, в основном подтвердивших факт существования определенных двигательных и чувствительных областей в коре большого мозга высших животных и человека.

По вопросу о локализации (представительстве) функции в коре больших полушарий головного мозга конкурировали друг с другом две диаметрально противоположные точки зрения: локализационистов и антилокализа-ционистов (эквипотенциалистов).

Локализационисты являлись сторонниками узкой локализации различных функций, как простых, так и сложных.

Совершенно другого взгляда придерживались антилокализационисты. Они отрицали всякую локализацию функций в головном мозге. Вся кора для них была равноценной и однородной. Все ее структуры, полагали они, имеют одинаковые возможности для осуществления различных функций (эквипотенциальны).

Проблема локализации может получить правильное разрешение только при диалектическом подходе к ней, учитывающем и целостную деятельность всего головного мозга, и различное физиологическое значение отдельных частей его. Именно таким образом подошел к проблеме локализации И. П. Павлов. В пользу локализации функций в коре убедительно говорят многочисленные опыты И. П. Павлова и его сотрудников с экстирпацией определенных участков головного мозга. Резекция у собаки затылочных долей больших полушарий (центров зрения) наносит огромный урон выработанным у нее условным рефлексам на зрительные сигналы и оставляет нетронутыми все условные рефлексы на звуковые, тактильные, обонятельные и прочие раздражения. Наоборот, резекция височных долей (центров слуха) ведет к исчезновению условных рефлексов на звуковые сигналы и не влияет на рефлексы, связанные с оптическими сигналами, и т. д. Против эквипотенциализма, в пользу представительства функции в определенных зонах больших полушарий говорят и новейшие данные электроэнцефалографии. Раздражение определенного участка тела ведет к появлению реактивных (вызванных) потенциалов в коре в «центре» этого участка.

И. П. Павлов был убежденным сторонником локализации функций в коре больших полушарий, но только локализации относительной и динамической. Относительность локализации проявляется в том, что каждый участок коры головного мозга, являясь носителем определенной специальной функции, «центром» этой функции, ответственным за нее, участвует и во многих других функциях коры, но уже не в качестве основного звена, не в роли «центра», а наравне со многими другими областями.

Функциональная пластичность коры, ее способность восстанавливать утраченную функцию путем установления новых сочетаний говорят не только об относительности локализации функций, но и о ее динамичности.

В основе всякой более или менее сложной функции лежит согласованная деятельность многих областей коры головного мозга, но каждая из этих областей участвует в данной функции по-своему.

В основе современных представлений о «системной локализации функций» лежит учение И. П. Павлова о динамическом стереотипе. Так, высшие психические функции (речь, письмо, чтение, счет, гнозис, праксис) имеют сложную организацию. Они никогда не осуществляются какими-то изолированными центрами, а всегда являются процессами, «размещенными по сложной системе зон мозговой коры» (А. Р. Лурия, 1969). Эти «функциональные системы» подвижны; иначе говоря, система средств, с помощью которых та или иная задача может быть решена, изменяется, что, конечно, не снижает значения для них хорошо изученных «закрепленных» корковых зон Брока, Вернике и др.

Центры коры больших полушарий человека делят на симметричные, представленные в обоих полушариях, и асимметричные, имеющиеся только в одном полушарии. К последним относятся центры речи и функций, связанных с актом речи (письма, чтения и пр.), существующие только в одном полушарии: в левом - у правшей, в правом - у левшей.

Современные представления о структурно-функциональной организации коры полушарий головного мозга исходят из классической павловской концепции анализаторов, уточненной и дополненной последующими исследованиями. Различают три типа корковых полей (Г. И. Поляков, 1969). Первичные поля (ядра анализаторов) соответствуют архитектоническим зонам коры, в которых заканчиваются сенсорные проводниковые пути (проекционные зоны). Вторичные поля (периферические отделы ядер анализаторов) располагаются вокруг первичных полей. Эти зоны связаны с рецепторами опосредовано, в них происходит более детальная обработка поступающих сигналов. Третичные, или ассоциативные, поля располагаются в зонах взаимного перекрытия корковых систем анализаторов и занимают у человека более половины всей поверхности коры. В этих зонах происходит установление меж-анализаторных связей, обеспечивающих обобщенную форму обобщенного действия (В. М. Смирнов, 1972). Поражение этих зон сопровождается нарушениями гнозиса, праксиса, речи, целенаправленного поведения.

В коре головного мозга различают зоны - поля Бродмана

1-я зона - двигательная - представлена центральной извилиной и лобной зоной впереди нее - 4, 6, 8, 9 поля Бродмана. При ее раздражении - различные двигательные реакции; при ее разрушении - нарушения двигательных функций: адинамия, парез, паралич (соответственно - ослабление, резкое снижение, исчезновение).

В 50-е годы ХХ в.установили, что в двигательной зоне различные группы мышц представлены неодинаково. Мышцы нижней конечности - в верхнем отделе 1-ой зоны. Мышцы верхней конечности и головы - в нижнем отделе 1-й зоны. Наибольшую площадь занимают проекция мимической мускулатуры, мышц языка и мелких мышц кисти руки.

2-я зона - чувствительная - участки коры головного мозга кзади от центральной борозды (1, 2, 3, 4, 5, 7 поля Бродмана). При раздражении этой зоны - возникают ощущения, при ее разрушении - выпадение кожной, проприо-, интерочувствительности. Гипостезия - снижение чувствительности, анестезия - выпадение чувствительности, парестезия - необычные ощущения (мурашки). Верхние отделы зоны - представлена кожа нижних конечностей, половых органов. В нижних отделах - кожа верхних конечностей, головы, рта.

1-я и 2-я зоны тесно связаны друг с другом в функциональном отношении. В двигательной зоне много афферентных нейронов, получающих импульсы от проприорецепторов - это мотосенсорные зоны. В чувствительной зоне много двигательных элементов - это сенсомоторные зоны - отвечают за возникновение болевых ощущений.

3-я зона - зрительная зона - затылочная область коры головного мозга (17, 18, 19 поля Бродмана). При разрушении 17 поля - выпадение зрительных ощущений (корковая слепота).

Различные участки сетчатки неодинаково проецируются в 17 поле Бродмана и имеют различное расположение при точечном разрушении 17 поля выпадает видение окружающей среды, которое проецируется на соответствующие участки сетчатки глаза. При поражении 18 поля Бродмана страдают функции, связанные с распознаванием зрительного образа и нарушается восприятие письма. При поражении 19 поля Бродмана - возникают различные зрительные галлюцинации, страдает зрительная память и другие зрительные функции.

4-я - зона слуховая - височная область коры головного мозга (22, 41, 42 поля Бродмана). При поражении 42 поля - нарушается функция распознавания звуков. При разрушении 22 поля - возникают слуховые галлюцинации, нарушение слуховых ориентировочных реакций, музыкальная глухота. При разрушении 41 поля - корковая глухота.

5-я зона - обонятельная - располагается в грушевидной извилине (11 поле Бродмана).

6-я зона - вкусовая - 43 поле Бродмана.



7-я зона - речедвигательная зона (по Джексону - центр речи) - у большинства людей (праворуких) располагается в левом полушарии.

Эта зона состоит из 3-х отделов.

Речедвигательный центр Брока - расположен в нижней части лобных извилин - это двигательный центр мышц языка. При поражении этой области - моторная афазия.

Сенсорный центр Вернике - расположен в височной зоне - связан с восприятием устной речи. При поражении возникает сенсорная афазия - человек не воспринимает устную речь, страдает произношение, та как нарушается восприятие собственной речи.

Центр восприятия письменной речи - располагается в зрительной зоне коры головного мозга - 18 поле Бродмана аналогичные центры, но менее развитые, есть и в правом полушарии, степень их развития зависит от кровоснабжения. Если у левши повреждено правое полушарие, функция речи страдает в меньшей степени. Если у детей повреждается левой полушарие, то его функцию на себя берет правое. У взрослых способность правого полушария воспроизводить речевые функции - утрачивается.